Přístupnostní navigace
E-application
Search Search Close
Publication detail
MACHŮ, Z. ŠEVEČEK, O. HADAŠ, Z. KOTOUL, M.
Original Title
Modeling of electromechanical response and fracture resistance of multilayer piezoelectric energy harvester with residual stresses
Type
journal article in Web of Science
Language
English
Original Abstract
The article focuses on a modeling and subsequent optimization of a novel layered architecture of the vibration piezoceramic energy harvester composed of ZrO2/Al2O3/BaTiO(3)layers and containing thermal residual stresses. The developed analytical/numerical model allows to determine the complete electromechanical response and the apparent fracture toughness of the multilayer vibration energy harvester, upon consideration of thermal residual stresses and time-harmonic kinematic excitation. The derived model uses the Euler-Bernoulli beam theory, Hamilton's variational principle, and a classical laminate theory to determine the first natural frequency, steady-state electromechanical response of the beam upon harmonic vibrations, and also the mechanical stresses within particular layers of the harvester. The laminate apparent fracture toughness is computed by means of the weight function approach. A crucial point is the further optimization of the layered architecture from both the electromechanical response and the fracture resistance point of view. Maximal allowable excitation acceleration of the harvester upon which the piezoelectric layer will not fail is determined. It makes possible to better use the harvester's capabilities in a given application and simultaneously guarantee its safe operation. Outputs of the derived analytical model were validated with finite element method simulations and available experimental results, and a good agreement between all approaches was obtained.
Keywords
ceramic laminate; piezoelectricity; finite element model; classical laminate theory; vibrations; energy harvesting; optimization; fracture resistance
Authors
MACHŮ, Z.; ŠEVEČEK, O.; HADAŠ, Z.; KOTOUL, M.
Released
1. 11. 2020
Publisher
SAGE Publications Ltd
Location
Velká Británie
ISBN
1530-8138
Periodical
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES
Year of study
31
Number
19
State
United Kingdom of Great Britain and Northern Ireland
Pages from
2261
Pages to
2287
Pages count
27
URL
https://journals.sagepub.com/doi/full/10.1177/1045389X20942832
BibTex
@article{BUT164670, author="Zdeněk {Machů} and Oldřich {Ševeček} and Zdeněk {Hadaš} and Michal {Kotoul}", title="Modeling of electromechanical response and fracture resistance of multilayer piezoelectric energy harvester with residual stresses", journal="JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES", year="2020", volume="31", number="19", pages="2261--2287", doi="10.1177/1045389X20942832", issn="1530-8138", url="https://journals.sagepub.com/doi/full/10.1177/1045389X20942832" }