Publication detail

Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG

RAMAZANOV, S. SOBOLA, D. ORUDZHEV, F. KNÁPEK, A. POLČÁK, J. POTOČEK, M. KASPAR, P. DALLAEV, R.

Original Title

Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG

Type

journal article in Web of Science

Language

English

Original Abstract

BiFeO3 (BFO) films on highly oriented pyrolytic graphite (HOPG) substrate were obtained by the atomic layer deposition (ALD) method. The oxidation of HOPG leads to the formation of bubble regions creating defective regions with active centers. Chemisorption occurs at these active sites in ALD. Additionally, carbon interacts with ozone and releases carbon oxides (CO, CO2). Further annealing during the in situ XPS process up to a temperature of 923 K showed a redox reaction and the formation of oxygen vacancies (Vo) in the BFO crystal lattice. Bubble delamination creates flakes of BiFeO3-x/rGO heterostructures. Magnetic measurements (M–H) showed ferromagnetism (FM) at room temperature Ms ~ 120 emu/cm3. The contribution to magnetization is influenced by the factor of charge redistribution on Vo causing the distortion of the lattice as well as by the superstructure formed at the boundary of two phases, which causes strong hybridization due to the superexchange interaction of the BFO film with the FM sublattice of the interface region. The development of a method for obtaining multiferroic structures with high FM values (at room temperature) is promising for magnetically controlled applications.

Keywords

BiFeO3; atomic layer deposition; perovskite structure; graphite surface; ferromagnetic properties

Authors

RAMAZANOV, S.; SOBOLA, D.; ORUDZHEV, F.; KNÁPEK, A.; POLČÁK, J.; POTOČEK, M.; KASPAR, P.; DALLAEV, R.

Released

9. 10. 2020

Publisher

MDPI

ISBN

2079-4991

Periodical

Nanomaterials

Year of study

10

Number

10

State

Swiss Confederation

Pages from

1990-1

Pages to

1990-17

Pages count

17

URL

Full text in the Digital Library