Přístupnostní navigace
E-application
Search Search Close
Publication result detail
LOMTATIDZE, A.; ŠREMR, J.
Original Title
On positive periodic solutions to second-order differential equations with a sub-linear non-linearity
English Title
Type
WoS Article
Original Abstract
The paper studies the existence and uniqueness of a positive periodic solution to the equation u′′ = p(t)u − q(t, u), where p ∈ L([0, ω]) and q : [0, ω] × R → R is a Carathéodory function sub-linear in the second argument. The general results are applied to some particular cases such as the equation u′′ = p(t)u − h(t) sin u with p, h ∈ L([0, ω]). This equation appears when approximating non-linearities in the equation of motion of a certain non-linear oscillator, namely, a pendulum deflected towards the two charged bodies.
English abstract
Keywords
Periodic solution;second-order differential equation;existence;uniqueness;positive solution
Key words in English
Authors
RIV year
2021
Released
01.02.2021
Publisher
Elsevier
Location
GB - Velká Británie
ISBN
1468-1218
Periodical
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS
Volume
Number
57
State
Kingdom of the Netherlands
Pages from
1
Pages to
24
Pages count
URL
https://www.sciencedirect.com/science/article/pii/S1468121820301188?via%3Dihub
BibTex
@article{BUT165693, author="Aleksandre {Lomtatidze} and Jiří {Šremr}", title="On positive periodic solutions to second-order differential equations with a sub-linear non-linearity", journal="NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS", year="2021", volume="2021", number="57", pages="1--24", doi="10.1016/j.nonrwa.2020.103200", issn="1468-1218", url="https://www.sciencedirect.com/science/article/pii/S1468121820301188?via%3Dihub" }