Přístupnostní navigace
E-application
Search Search Close
Publication detail
BIDLO, M.
Original Title
Evolution of Cellular Automata with Conditionally Matching Rules for Image Filtering
Type
conference paper
Language
English
Original Abstract
We present an evolutionary method for the design of image filters using two-dimensional uniform cellular automata. Specifically, a technique called Conditionally Matching Rules is applied to represent transition functions for cellular automata working with 256 cell states. This approach allows reducing the length of chromosomes for the evolution substantially which was a need for such high number of states since the traditional table based encoding would require enormous memory space. The problem of removing Salt-and-Pepper noise from 8-bit grayscale images is considered as a case study. A cellular automaton will be initialised by the values of pixels of a corrupted image and a variant of Evolution Strategy will be applied for the design of a suitable transition function that is able to eliminate the noise from the image during ordinary development of the cellular automaton. We show that using only 5-cell neighbourhood of the cellular automaton in combination with conditionally matching rules the resulting filters are able to provide a very good output quality and are comparable with several existing solutions that require more resources. Moreover, the proposed evolutionary method exhibits a high performance which allows us to design filters in very short time even on a common PC.
Keywords
evolution strategy, cellular automaton, conditional rule, image filter, salt-and-pepper noise
Authors
Released
3. 9. 2020
Publisher
IEEE Computational Intelligence Society
Location
Los Alamitos
ISBN
978-1-7281-6929-3
Book
2020 IEEE Congress on Evolutionary Computation (CEC)
Pages from
1
Pages to
8
Pages count
URL
https://ieeexplore.ieee.org/document/9185767
BibTex
@inproceedings{BUT168119, author="Michal {Bidlo}", title="Evolution of Cellular Automata with Conditionally Matching Rules for Image Filtering", booktitle="2020 IEEE Congress on Evolutionary Computation (CEC)", year="2020", pages="1--8", publisher="IEEE Computational Intelligence Society", address="Los Alamitos", doi="10.1109/CEC48606.2020.9185767", isbn="978-1-7281-6929-3", url="https://ieeexplore.ieee.org/document/9185767" }