Přístupnostní navigace
E-application
Search Search Close
Publication detail
KOSIBA, M. BURGET, L.
Original Title
Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks
Type
journal article in Web of Science
Language
English
Original Abstract
Galaxy clusters appear as extended sources in XMM-Newton images, but not all extended sources are clusters. So, their proper classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM-Newton X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the XMM CLuster Archive Super Survey (X-CLASS) survey sample of galaxy cluster candidates, selected by a specially developed pipeline, the XAmin, tailored for extended source detection and characterization. Our data set contains 1707 galaxy cluster candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project contained 1600 galaxy cluster candidates in total of which 404 overlap with the experts sample. The networks were trained on expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and non-clusters, acquiring accuracy of 90percent, averaged after 10 runs. The results of using CNNs on combined X-ray and optical data for galaxy cluster candidate classification are encouraging, and there is a lot of potential for future usage and improvements.
Keywords
galaxies: clusters: general - methods: data analysis - techniques: image processing
Authors
KOSIBA, M.; BURGET, L.
Released
17. 6. 2020
ISBN
1365-2966
Periodical
Monthly Notices of the Royal Astronomical Society
Year of study
496
Number
4
State
United Kingdom of Great Britain and Northern Ireland
Pages from
4141
Pages to
4153
Pages count
13
URL
https://academic.oup.com/mnras/article-abstract/496/4/4141/5858922?redirectedFrom=fulltext
BibTex
@article{BUT168176, author="KOSIBA, M. and BURGET, L.", title="Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks", journal="Monthly Notices of the Royal Astronomical Society", year="2020", volume="496", number="4", pages="4141--4153", doi="10.1093/mnras/staa1723", issn="1365-2966", url="https://academic.oup.com/mnras/article-abstract/496/4/4141/5858922?redirectedFrom=fulltext" }
Documents
kosiba_mnras2020_2006.05998.pdf