Přístupnostní navigace
E-application
Search Search Close
Product detail
DIEZ SÁNCHEZ, M. LANDINI, F. BURGET, L.
Product type
software
Abstract
Diarization is the task of determining the number of speakers and "who speaks when" in a recording. It is part of speech data mining. The proposed software contains a full implementation of a Bayesian approach to do speaker diarization using low-dimensional neural representation of speakers (x-vectors) in individual segments. It follows the Brno University of Technology recipe for the Second DIHARD Diarization Challenge Track 1, where BUT was the winner. It consists of computing filter-bank features, computing x-vectors, performing Agglomerative Hierarchical Clustering on x-vectors as a first step to produce an initialization, applying Variational Bayes HMM over x-vectors to produce the diarization output, and scoring the diarization output. The software is written in Python and released as open-source under Apache License.
Keywords
Speaker Diarization, Variational Bayes, HMM, x-vector, DIHARD
Create date
11. 2. 2020
Location
https://github.com/BUTSpeechFIT/VBx
Possibilities of use
Využití výsledku jiným subjektem je možné bez nabytí licence (výsledek není licencován)
Licence fee
Poskytovatel licence na výsledek nepožaduje licenční poplatek
www
Documents
diez_IEEE_ACM_2019_08910412.pdf diez_icassp2020_09053982.pdf landini_icassp2020_09054251.pdf