Přístupnostní navigace
E-application
Search Search Close
Publication detail
KOHÚT, J. HRADIŠ, M.
Original Title
TS-Net: OCR Trained to Switch Between Text Transcription Styles
Type
conference paper
Language
English
Original Abstract
Multiple transcribers produce transcriptions in inconsistent transcription styles. This presents a problem for training consistent neural network systems for text recognition. We propose Transcription Style Block (TSB) which can learn to switch between multiple transcription styles without any explicit knowledge about the transcription rules. TSB is an adaptive instance normalization conditioned by transcription style identifiers e.g. document numbers or transcriber names and it can be added near the end of any standard text recognition network. We show that TSB is robust towards the number and complexity of transcription styles and does not degrade the text recognition performance. With time and data efficient adaptation to a new transcription style, we achieved up to 77\% relative test character error reduction in comparison to a network without the TSB.
Keywords
Transcription styles, Adaptive instance normalization, Text recognition, Neural networks, CTC
Authors
KOHÚT, J.; HRADIŠ, M.
Released
9. 8. 2021
Publisher
Springer Nature Switzerland AG
Location
Lausanne
ISBN
978-3-030-86336-4
Book
Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021
Edition
Lecture Notes in Computer Science
0302-9743
Periodical
Year of study
12824
Number
1
State
Federal Republic of Germany
Pages from
478
Pages to
493
Pages count
16
URL
https://pero.fit.vutbr.cz/publications
BibTex
@inproceedings{BUT169806, author="Jan {Kohút} and Michal {Hradiš}", title="TS-Net: OCR Trained to Switch Between Text Transcription Styles", booktitle="Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021", year="2021", series="Lecture Notes in Computer Science", journal="Lecture Notes in Computer Science", volume="12824", number="1", pages="478--493", publisher="Springer Nature Switzerland AG", address="Lausanne", doi="10.1007/978-3-030-86337-1\{_}32", isbn="978-3-030-86336-4", issn="0302-9743", url="https://pero.fit.vutbr.cz/publications" }