Přístupnostní navigace
E-application
Search Search Close
Publication detail
KŠICA, F. HADAŠ, Z. RUBEŠ, O. BĚHAL, J.
Original Title
Homogenized model of piezoelectric composite structure for sensing purposes
Type
conference paper
Language
English
Original Abstract
This paper presents an approach for homogenization of complex structure of macro-fibre composites in order to substitute the complicated layer composition with one single layer of homogenous material with equivalent mechanical and piezoelectric properties. A representative volume element is subjected to series of load cases in order to obtain the required properties of the homogenized model. The simulation results are validated by experimental measurements of output voltage on a fixed beam with attached macro-fiber composite sensors, subjected to an external excitation on a 1st and 2nd natural frequency. A satisfactory match between the results of simulations and experiment can be observed, with a maximum difference of 5% in the transition phases. This approach could be beneficial for future development of piezoelectric skins, with the potential application for non-destructive sensing and structure health monitoring in aerospace industry.
Keywords
FEM; Homogenization; Macro-Fiber Composite; Non-destructive testing; Smart piezoelectric skin
Authors
KŠICA, F.; HADAŠ, Z.; RUBEŠ, O.; BĚHAL, J.
Released
16. 9. 2019
Publisher
Springer Verlag
Location
Warsaw
ISBN
978-3-030-29993-4
Book
Mechatronics 2019: Recent Advances Towards Industry 4.0
Pages from
358
Pages to
365
Pages count
8
BibTex
@inproceedings{BUT170205, author="Filip {Kšica} and Zdeněk {Hadaš} and Ondřej {Rubeš} and Josef {Běhal}", title="Homogenized model of piezoelectric composite structure for sensing purposes", booktitle="Mechatronics 2019: Recent Advances Towards Industry 4.0", year="2019", pages="358--365", publisher="Springer Verlag", address="Warsaw", doi="10.1007/978-3-030-29993-4\{_}44", isbn="978-3-030-29993-4" }