Přístupnostní navigace
E-application
Search Search Close
Publication detail
BEZROUK, A. HOSSZÚ, T. HROMÁDKO, L. KOPEČEK, M. OLMROVÁ ZMRHALOVÁ, Z. SMUTNÝ, M. KRULICHOVÁ, I. MACÁK, J. KREMLÁČEK, J.
Original Title
Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: In vitro force relaxation and its clinical relevance
Type
journal article in Web of Science
Language
English
Original Abstract
Biodegradable stents are promising treatments for many diseases, e.g., coronary artery disease, urethral diseases, tracheal diseases, and esophageal strictures. The mechanical properties of biodegradable stent materials play a key role in the safety and efficacy of treatment. In particular, insufficient creep resistance of the stent material could result in premature stent collapse or narrowing. Commercially available biodegradable self-expandable SX-ELLA stents made of polydioxanone monofilament were tested. A new, simple, and affordable method to measure the shear modulus of tiny viscoelastic wires is presented. The important mechanical parameters of the polydioxanone filament were obtained: the median Young's modulus was (E) over tilde = 958 (922, 974) MPa and the shear modulus was (G) over tilde= 357 (185, 387) MPa, resulting in a Poisson's ratio of nu = 0.34. The SX-ELLA stents exhibited significant force relaxation due to the stress relaxation of the polydioxanone monofilament, approximately 19% and 36% 10 min and 48 h after stent application, respectively. However, these results were expected, and the manufacturer and implanting clinician should be aware of the known behavior of these biodegradable materials. If possible, a biodegradable stent should be designed considering therapeutic force rather than initial force. Additionally, new and more advanced biodegradable shape-memory polymers should be considered for future study and use.
Keywords
BENIGN ESOPHAGEAL STRICTURES; SUTURE MATERIALS; MEMORY; DEGRADATION; COMPOSITES; STRENGTH; BEHAVIOR; FIBERS; MODELS; CREEP
Authors
BEZROUK, A.; HOSSZÚ, T.; HROMÁDKO, L.; KOPEČEK, M.; OLMROVÁ ZMRHALOVÁ, Z.; SMUTNÝ, M.; KRULICHOVÁ, I.; MACÁK, J.; KREMLÁČEK, J.
Released
8. 7. 2020
Publisher
PLOS
Location
SAN FRANCISCO
ISBN
1932-6203
Periodical
PLOS ONE
Year of study
15
Number
7
State
United States of America
Pages from
1
Pages to
16
Pages count
URL
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235842
Full text in the Digital Library
http://hdl.handle.net/11012/196572
BibTex
@article{BUT170376, author="Aleš {Bezrouk} and Tomáš {Hosszú} and Luděk {Hromádko} and Zuzana {Olmrová Zmrhalová} and Martin {Kopeček} and Martin {Smutný} and Iva Selke {Krulichová} and Jan {Macák} and Jan {Kremláček}", title="Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: In vitro force relaxation and its clinical relevance", journal="PLOS ONE", year="2020", volume="15", number="7", pages="1--16", doi="10.1371/journal.pone.0235842", issn="1932-6203", url="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235842" }