Publication detail

A Scalable Algorithm for Network Localization and Synchronization

MEYER, F. ETZLINGER, B. LIU, Z. HLAWATSCH, F. WIN, Z.

Original Title

A Scalable Algorithm for Network Localization and Synchronization

Type

journal article in Web of Science

Language

English

Original Abstract

The Internet of Things (IoT) will seamlessly integrate a large number of densely deployed heterogeneous devices and will enable new location-aware services. However, fine-grained localization of IoT devices is challenging as their computation and communication resources are typically limited and different devices may have different qualities of internal clocks and different mobility patterns. To address these challenges, we propose a cooperative, scalable, and time-recursive algorithm for network localization and synchronization (NLS). Our algorithm is based on time measurements and supports heterogeneous devices with limited computation and communication resources, time-varying clock and location parameters, arbitrary state-evolution models, and time-varying network connectivity. These attributes make the proposed algorithm attractive for IoT-related applications. The algorithm is furthermore able to incorporate measurements from additional sensors for positioning, navigation, and timing such as receivers for global navigation satellite systems. Based on a factor graph representation of the underlying spatiotemporal Bayesian sequential estimation problem, the algorithm uses belief propagation (BP) for an efficient marginalization of the joint posterior distribution. To account for the nonlinear measurement model and nonlinear state-evolution models while keeping the communication and computation requirements low, we develop an efficient second-order implementation of the BP rules by means of the recently introduced sigma point belief propagation technique. Simulation results demonstrate the high synchronization and localization accuracy as well as the low computational complexity of the proposed algorithm. In particular, in sufficiently dense networks, the proposed algorithm outperforms the state-of-the-art BP-based algorithm for NLS in terms of both estimation accuracy and computational complexity.

Keywords

Belief propagation (BP); cooperative localization; cooperative synchronization; distributed estimation; factor graph; Internet of Things (IoT); message passing; network localization; network synchronization

Authors

MEYER, F.; ETZLINGER, B.; LIU, Z.; HLAWATSCH, F.; WIN, Z.

Released

2. 3. 2018

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Location

PISCATAWAY

ISBN

2327-4662

Periodical

IEEE Internet of Things Journal

Year of study

5

Number

6

State

United States of America

Pages from

4714

Pages to

4727

Pages count

14

URL

BibTex

@article{BUT170644,
  author="MEYER, F. and ETZLINGER, B. and LIU, Z. and HLAWATSCH, F. and WIN, Z.",
  title="A Scalable Algorithm for Network Localization and Synchronization",
  journal="IEEE Internet of Things Journal",
  year="2018",
  volume="5",
  number="6",
  pages="4714--4727",
  doi="10.1109/JIOT.2018.2811408",
  issn="2327-4662",
  url="https://ieeexplore.ieee.org/document/8306100"
}