Publication detail

Uniform exponential stability of linear delayed integro-differential vector equations

BEREZANSKY, L. DIBLÍK, J. SVOBODA, Z. ŠMARDA, Z.

Original Title

Uniform exponential stability of linear delayed integro-differential vector equations

Type

journal article in Web of Science

Language

English

Original Abstract

Uniform exponential stability of a linear delayed integro-differential vector equation is considered. The main result is of an explicit type, depending on all delays, and its proof is based on an a priori estimation of solutions, a Bohl-Perron type result, and utilization of the matrix measure.

Keywords

A priori estimation; Delay; Exponential stability; Integro-differential systems; Linear systems Bohl-Perron type result

Authors

BEREZANSKY, L.; DIBLÍK, J.; SVOBODA, Z.; ŠMARDA, Z.

Released

5. 1. 2021

ISBN

0022-0396

Periodical

J.Differetial Equations

Year of study

270

Number

5

State

United States of America

Pages from

573

Pages to

595

Pages count

23

URL

BibTex

@article{BUT171676,
  author="Leonid {Berezansky} and Josef {Diblík} and Zdeněk {Svoboda} and Zdeněk {Šmarda}",
  title="Uniform exponential stability of linear delayed integro-differential vector equations",
  journal="J.Differetial Equations",
  year="2021",
  volume="270",
  number="5",
  pages="573--595",
  doi="10.1016/j.jde.2020.08.011",
  issn="0022-0396",
  url="https://www.sciencedirect.com/science/article/pii/S0022039620304551"
}