Přístupnostní navigace
E-application
Search Search Close
Publication detail
Kaushik, M. Joshi, R. C. Singh, Kushwah, A. S. Gupta, M. K. Banerjee, M. Burget, R. Dutta, M. K.
Original Title
Cytokine Gene Variants and Socio-Demographic Characteristics as Predictors of Cervical Cancer: A Machine Learning Approach
Type
journal article in Web of Science
Language
English
Original Abstract
Cervical cancer is still one of the most prevalent cancers in women and a significant cause of mortality. Cytokine gene variants and socio-demographic characteristics have been reported as biomarkers for determining the cervical cancer risk in the Indian population. This study was designed to apply a machine learning-based model using these risk factors for better prognosis and prediction of cervical cancer. This study includes the dataset of cytokine gene variants, clinical and socio-demographic characteristics of normal healthy control subjects, and cervical cancer cases. Different risk factors, including demographic details and cytokine gene variants, were analysed using different machine learning approaches. Various statistical parameters were used for evaluating the proposed method. After multi-step data processing and random splitting of the dataset, machine learning methods were applied and evaluated with 5-fold cross-validation and also tested on the unseen data records of a collected dataset for proper evaluation and analysis. The proposed approaches were verified after analysing various performance metrics. The logistic regression technique achieved the highest average accuracy of 82.25% and the highest average F1-score of 82.58% among all the methods. Ridge classifiers and the Gaussian Naïve Bayes classifier achieved the highest sensitivity—85%. The ridge classifier surpasses most of the machine learning classifiers with 84.78% accuracy and 97.83% sensitivity. The risk factors analysed in this study can be taken as biomarkers in developing a cervical cancer diagnosis system. The outcomes demonstrate that the machine learning assisted analysis of cytokine gene variants and socio-demographic characteristics can be utilised effectively for predicting the risk of developing cervical cancer.
Keywords
Artificial Intelligence; Bioinformatics; Cervical Cancer;Computational Biology;Cytokine Gene Polymorphisms; Machine Learning
Authors
Kaushik, M.; Joshi, R. C.; Singh, Kushwah, A. S.; Gupta, M. K.; Banerjee, M.; Burget, R.; Dutta, M. K.
Released
10. 6. 2021
Publisher
Computers in Biology and Medicine
ISBN
0010-4825
Periodical
COMPUTERS IN BIOLOGY AND MEDICINE
Year of study
June 2021
Number
8
State
United States of America
Pages from
3
Pages to
27
Pages count
URL
https://www.sciencedirect.com/science/article/pii/S001048252100353X
BibTex
@article{BUT171779, author="Kaushik, M. and Joshi, R. C. and Singh, Kushwah, A. S. and Gupta, M. K. and Banerjee, M. and Burget, R. and Dutta, M. K.", title="Cytokine Gene Variants and Socio-Demographic Characteristics as Predictors of Cervical Cancer: A Machine Learning Approach", journal="COMPUTERS IN BIOLOGY AND MEDICINE", year="2021", volume="June 2021", number="8", pages="3--27", doi="10.1016/j.compbiomed.2021.104559", issn="0010-4825", url="https://www.sciencedirect.com/science/article/pii/S001048252100353X" }