Publication detail

Functionalized 2D Germanene and Silicene Enzymatic System

CHIA, H. ŠTURALA, J. WEBSTER, R. PUMERA, M.

Original Title

Functionalized 2D Germanene and Silicene Enzymatic System

Type

journal article in Web of Science

Language

English

Original Abstract

In recent years, 2D Group 14 graphane analogs, such as germanane, methyl germanane, and siloxene, have taken materials scientists by storm due to their facile synthesis procedures and the numerous attractive properties proffered. Due to their fascinating properties, these emerging Group 14 graphane analogs are studied for varied applications including supercapacitors, photocatalysts, and sensors. Although several groups have reported the viability of using Group 14 graphane analogs for the construction of biosensors, they are mainly based upon computational studies, and few experimental studies are conducted. This paper aims to experimentally investigate the feasibility of using germanane and siloxene-based materials as 2D functional support for enzymatic systems. The heterogeneous electron transfer kinetics and the glucose sensing response of the as-synthesized germanane, methyl germanane, and siloxene are examined, and the most outstanding material, germanane, is employed for further construction of electrochemical glucose biosensor. The fabricated biosensing platform delivers excellent analytical performances, displaying good linearity over various magnitudes of glucose concentrations, and possesses a low detection limit. The findings reported herein showcase the potential of applying these 2D Group 14 graphane analogs for future developments of highly selective and sensitive biosensors for biomedical, environmental monitoring, and food sampling applications.

Keywords

electrochemistry; germanane; germanene; glucose biosensors; methyl germanane; siloxene

Authors

CHIA, H.; ŠTURALA, J.; WEBSTER, R.; PUMERA, M.

Released

1. 4. 2021

Publisher

WILEY-V C H VERLAG GMBH

Location

WEINHEIM

ISBN

1616-301X

Periodical

ADVANCED FUNCTIONAL MATERIALS

Year of study

31

Number

16

State

Federal Republic of Germany

Pages from

2011125-1

Pages to

2011125-9

Pages count

9

URL