Přístupnostní navigace
E-application
Search Search Close
Publication detail
NOVOTNÁ, P.
Original Title
Multiple Instance Learning Framework Used For ECG Premature Contraction Localization
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
We propose the model combining convolutional neural network with multiple instance learning in order to localize the premature atrial contraction and premature ventricular contraction. The model is based on ResNet architecture modified for 1D signal processing. Model was trained on China Physiological Signal Challenge 2018 database extended by manually labeled ground truth positions of premature complexes. The presented method did not reach satisfying results in PAC localization (with dice = 0.127 for avg-pooling implementation). On the other hand, results of lo- calization of PVCs were comparable with other published studies (with dice = 0.952 for avg-pooling implementation).
Keywords
EEICT, ECG, PAC, PVC, CNN, MIL, arrhytmia, localization
Authors
Released
3. 5. 2021
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-5942-7
Book
Proceedings I of the 27th Conference STUDENT EEICT 2021
Edition
1
Edition number
Pages from
311
Pages to
315
Pages count
5
URL
https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf
BibTex
@inproceedings{BUT172365, author="Petra {Novotná}", title="Multiple Instance Learning Framework Used For ECG Premature Contraction Localization", booktitle="Proceedings I of the 27th Conference STUDENT EEICT 2021 ", year="2021", series="1", number="1", pages="311--315", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5942-7", url="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf" }