Přístupnostní navigace
E-application
Search Search Close
Publication detail
FOJTŮ, M. BALVAN, J. VIČAR, T. POLANSKÁ, H. PELTANOVÁ, B. MATĚJKOVÁ, S. RAUDENSKÁ, M. ŠTURALA, J. MAYORGA BURREZO, P. MASAŘÍK, M. PUMERA, M.
Original Title
Silicane Derivative Increases Doxorubicin Efficacy in an Ovarian Carcinoma Mouse Model: Fighting Drug Resistance
Type
journal article in Web of Science
Language
English
Original Abstract
The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 mu g/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.
Keywords
2D nanomaterials; silicene; polysiloxane; nanosheets; targeted drug delivery; doxorubicin; ovarian cancer; drug resistance
Authors
FOJTŮ, M.; BALVAN, J.; VIČAR, T.; POLANSKÁ, H.; PELTANOVÁ, B.; MATĚJKOVÁ, S.; RAUDENSKÁ, M.; ŠTURALA, J.; MAYORGA BURREZO, P.; MASAŘÍK, M.; PUMERA, M.
Released
14. 7. 2021
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
ISBN
1944-8252
Periodical
ACS applied materials & interfaces
Year of study
13
Number
27
State
United States of America
Pages from
31355
Pages to
31370
Pages count
16
URL
https://pubs.acs.org/doi/10.1021/acsami.0c20458
BibTex
@article{BUT172538, author="Michaela {Fojtů} and Jan {Balvan} and Tomáš {Vičar} and Hana {Polanská} and Barbora {Peltanová} and Stanislava {Matějková} and Martina {Raudenská} and Jiří {Šturala} and Paula {Mayorga Burrezo} and Michal {Masařík} and Martin {Pumera}", title="Silicane Derivative Increases Doxorubicin Efficacy in an Ovarian Carcinoma Mouse Model: Fighting Drug Resistance", journal="ACS applied materials & interfaces", year="2021", volume="13", number="27", pages="31355--31370", doi="10.1021/acsami.0c20458", issn="1944-8252", url="https://pubs.acs.org/doi/10.1021/acsami.0c20458" }