Přístupnostní navigace
E-application
Search Search Close
Publication detail
GHOSH, K. PUMERA, M.
Original Title
MXene and MoS3-x Coated 3D-Printed Hybrid Electrode for Solid-State Asymmetric Supercapacitor
Type
journal article in Web of Science
Language
English
Original Abstract
Recently, 2D nanomaterials such as transition metal carbides or nitrides (MXenes) and transition metal dichalcogenides (TMDs) have attracted ample attention in the field of energy storage devices specifically in supercapacitors (SCs) because of their high metallic conductivity, wide interlayer spacing, large surface area, and 2D layered structures. However, the low potential window (Delta V approximate to 0.6 V) of MXene e.g., Ti3C2Tx limits the energy density of the SCs. Herein, asymmetric supercapacitors (ASCs) are fabricated by assembling the exfoliated Ti3C2Tx (Ex-Ti3C2Tx) as the negative electrode and transition metal chalcogenide (MoS3-x) coated 3D-printed nanocarbon framework (MoS3-x@3DnCF) as the positive electrode utilizing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte, which provides a wide Delta V of 1.6 V. The Ex-Ti3C2Tx possesses wrinkled sheets which prevent the restacking of Ti3C2Tx 2D layers. The MoS3-x@3DnCF holds a porous structure and offers diffusion-controlled intercalated pseudocapacitance that enhances the overall capacitance. The 3D printing allows a facile fabrication of customized shaped MoS3-x@3DnCF electrodes. Employing the advantages of the 3D-printing facilities, two different ASCs, such as sandwich- and interdigitated-configurations are fabricated. The customized ASCs provide excellent capacitive performance. Such ASCs combining the MXene and electroactive 3D-printed nanocarbon framework can be used as potential energy storage devices in modern electronics.
Keywords
3D printing; asymmetric supercapacitors; MoS2; MXene; solid-state; Ti3C2; TMDs
Authors
GHOSH, K.; PUMERA, M.
Released
1. 8. 2021
Publisher
WILEY-V C H VERLAG GMBH
Location
WEINHEIM
ISBN
2366-9608
Periodical
Small Methods
Year of study
5
Number
8
State
Federal Republic of Germany
Pages from
2100451-1
Pages to
2100451-15
Pages count
15
URL
https://onlinelibrary.wiley.com/doi/10.1002/smtd.202100451