Přístupnostní navigace
E-application
Search Search Close
Publication detail
ČELKO, L. GUTIÉRREZ CANO, V. CASAS LUNA, M. MATULA, J. OLIVER-URRUTIA, C. REMEŠOVÁ, M. DVOŘÁK, K. ZIKMUND, T. KAISER, J. MONTUFAR JIMENEZ, E.
Original Title
Characterization of porosity and hollow defects in ceramic objects built by extrusion additive manufacturing
Type
journal article in Web of Science
Language
English
Original Abstract
Direct ink writing, or robocasting, is an extrusion additive manufacturing technique for the fabrication of complex ceramic parts. Pores are common defects in post-sintered robocast parts that strongly influence the performance by changing the density, the transport properties, and the mechanical strength. In this work, the porosity (volumetric fraction, size distribution, geometry and topological distribution) of monolithic and 3D-lattice specimens made of hydroxyapatite was comprehensively characterized at multiple length scales through the six most widely used experimental methods for the study of porous materials. These two types of samples embrace the two most common types of additive manufactured ceramics and allowed the study of materials with pores in the submicron scale, as well as materials with a bimodal pore size distribution at significantly different length scales. Detected pores were divided into (1) engineered porosity set by the structural design, and (2) hollow defects, including intergranular porosity, trapped-air pores, cracks, and cavities, that overlapped at different length scales with the engineered porosity. The origin and mechanisms of formation of hollow defects are discussed, providing guidelines to avoid them. The experimental methods that allow discerning between pores and hollow defects are highlighted, and their advantages and drawbacks are discussed. This work might serve as a guide for the selection of the proper combination of methods for the pore evaluation of similar additive manufactured parts.
Keywords
Porosity; Robocasting; N-2 adsorption; Mercury intrusion porosimetry; X-ray computed tomography
Authors
ČELKO, L.; GUTIÉRREZ CANO, V.; CASAS LUNA, M.; MATULA, J.; OLIVER-URRUTIA, C.; REMEŠOVÁ, M.; DVOŘÁK, K.; ZIKMUND, T.; KAISER, J.; MONTUFAR JIMENEZ, E.
Released
1. 11. 2021
Publisher
ELSEVIER
Location
AMSTERDAM
ISBN
2214-8604
Periodical
Additive Manufacturing
Year of study
47
Number
1
State
Kingdom of the Netherlands
Pages from
Pages to
12
Pages count
URL
https://www.webofscience.com/wos/woscc/full-record/WOS:000701887600001
BibTex
@article{BUT172824, author="Ladislav {Čelko} and Vanessa {Gutiérrez Cano} and Mariano {Casas Luna} and Jan {Matula} and Carolina {Oliver Urrutia} and Michaela {Remešová} and Karel {Dvořák} and Tomáš {Zikmund} and Jozef {Kaiser} and Edgar Benjamin {Montufar Jimenez}", title="Characterization of porosity and hollow defects in ceramic objects built by extrusion additive manufacturing", journal="Additive Manufacturing", year="2021", volume="47", number="1", pages="1--12", doi="10.1016/j.addma.2021.102272", issn="2214-8604", url="https://www.webofscience.com/wos/woscc/full-record/WOS:000701887600001" }