Přístupnostní navigace
E-application
Search Search Close
Product detail
DOSEDĚL, M. KOPEČNÝ, L. HAVRÁNEK, Z.
Product type
software
Abstract
Software implementation of a neural network based on the multiplayer perceptron technique has been created in MATLAB environment. It serves for rolling elements bearing faults classification based on evaluation of the mechanical manifestation. Such quantities (vibration acceleration, ultrasonic and acoustic waves) are measured by appropriate sensors. Neural network has been trained and validated on the real data acquired on the bearing housing for healthy as well as several faulty states of the machine under constant operational conditions. Trained neural network can be easily implemented into microcontroller in the low-performance device, where classification function will be inferred.
Keywords
neural network, multiplayer perceptron, deep learning, supervised learning, bearing failures
Create date
12. 5. 2021
Location
Vysoké učení technické v Brně, CEITEC VUT Laboratoř pokročilých senzorů, B1.04 Purkyňova 656/123 612 00 Brno
Possibilities of use
K využití výsledku jiným subjektem je vždy nutné nabytí licence
Licence fee
Poskytovatel licence na výsledek nepožaduje v některých případech licenční poplatek
www
https://ai4di.ceitec.cz/vysledky/ann_bearing_fault_classifier