Přístupnostní navigace
E-application
Search Search Close
Publication detail
ZULUAGA-GOMEZ, J. NIGMATULINA, I. PRASAD, A. MOTLÍČEK, P. VESELÝ, K. KOCOUR, M. SZŐKE, I.
Original Title
Contextual Semi-Supervised Learning: An Approach to Leverage Air-Surveillance and Untranscribed ATC Data in ASR Systems
Type
conference paper
Language
English
Original Abstract
Air traffic management and specifically air-traffic control (ATC) rely mostly on voice communications between Air Traffic Controllers (ATCos) and pilots. In most cases, these voice communications follow a well-defined grammar that could be leveraged in Automatic Speech Recognition (ASR) technologies. The callsign used to address an airplane is an essential part of all ATCo-pilot communications. We propose a two-step approach to add contextual knowledge during semi-supervised training to reduce the ASR system error rates at recognizing the part of the utterance that contains the callsign. Initially, we represent in a WFST the contextual knowledge (i.e. air-surveillance data) of an ATCo-pilot communication. Then, during Semi-Supervised Learning (SSL) the contextual knowledge is added by secondpass decoding (i.e. lattice re-scoring). Results show that unseen domains (e.g. data from airports not present in the supervised training data) are further aided by contextual SSL when compared to standalone SSL. For this task, we introduce the Callsign Word Error Rate (CA-WER) as an evaluation metric, which only assesses ASR performance of the spoken callsign in an utterance. We obtained a 32.1% CA-WER relative improvement applying SSL with an additional 17.5% CA-WER improvement by adding contextual knowledge during SSL on a challenging ATC-based test set gathered from LiveATC.
Keywords
automatic speech recognition, contextual semisupervised learning, air traffic control, air-surveillance data, callsign detection.
Authors
ZULUAGA-GOMEZ, J.; NIGMATULINA, I.; PRASAD, A.; MOTLÍČEK, P.; VESELÝ, K.; KOCOUR, M.; SZŐKE, I.
Released
30. 8. 2021
Publisher
International Speech Communication Association
Location
Brno
ISBN
1990-9772
Periodical
Proceedings of Interspeech
Year of study
2021
Number
8
State
French Republic
Pages from
3296
Pages to
3300
Pages count
5
URL
https://www.isca-speech.org/archive/interspeech_2021/zuluagagomez21_interspeech.html
BibTex
@inproceedings{BUT175846, author="ZULUAGA-GOMEZ, J. and NIGMATULINA, I. and PRASAD, A. and MOTLÍČEK, P. and VESELÝ, K. and KOCOUR, M. and SZŐKE, I.", title="Contextual Semi-Supervised Learning: An Approach to Leverage Air-Surveillance and Untranscribed ATC Data in ASR Systems", booktitle="Proceedings Interspeech 2021", year="2021", journal="Proceedings of Interspeech", volume="2021", number="8", pages="3296--3300", publisher="International Speech Communication Association", address="Brno", doi="10.21437/Interspeech.2021-1373", issn="1990-9772", url="https://www.isca-speech.org/archive/interspeech_2021/zuluagagomez21_interspeech.html" }