Publication detail

The influence of plate corrugation geometry on heat and mass transfer performance of plate heat exchangers for condensation of steam in the presence of air

Arsenyeva, O., Klemeš, J.J., Plankovskyy, S., Kapustenko, P.

Original Title

The influence of plate corrugation geometry on heat and mass transfer performance of plate heat exchangers for condensation of steam in the presence of air

Type

journal article in Web of Science

Language

English

Original Abstract

Processes of steam condensation in the presence of air, as non-condensable gas, was studied in experiments with the models of plate heat exchanger (PHE) channels formed by plates with corrugations of different geometry. Validity of the developed mathematical model for the calculation of local process parameters is confirmed, and it is used to facilitate the analysis of experimental results. Sets of experiments were performed on five samples modelling PHE channel main corrugated field. The corrugations angle to plate vertical axis in three experimental samples was 30°, 45° and 60° at the same corrugations’ height of 5 mm. Another two samples had corrugations height 7.5 mm and 10 mm at the same corrugations angle 60°. Various effects of plate sizes and geometrical parameters of corrugations on the performance of PHE as a condenser for steam–air mixture and local process parameters profiles are discussed. Presented analysis shows that the specified process conditions on temperature and pressure drop in PHE can be satisfied by varying corrugations angle and channel spacing at plates of different lengths. To maintain the same temperature program with a decrease of plates corrugation angle from 60° to 30° require the plates with a length bigger from 2 to 2.6 times, depending on specific process conditions. These plate parameters are recommended for use as variables in solving the problem of PHE plate geometry optimisation with the use of the proposed mathematical model.

Keywords

Plate heat exchanger; Condensation; Non-condensable gas; Plate geometry optimisation; Heat and mass transfer

Authors

Arsenyeva, O., Klemeš, J.J., Plankovskyy, S., Kapustenko, P.

Released

1. 5. 2022

Publisher

Elsevier Ltd

ISBN

2451-9049

Periodical

Thermal science and engineering progress

Number

30

State

Kingdom of the Netherlands

Pages from

101248

Pages to

101248

Pages count

13

URL

BibTex

@article{BUT175904,
  author="Olga {Arsenyeva} and Jiří {Klemeš}",
  title="The influence of plate corrugation geometry on heat and mass transfer performance of plate heat exchangers for condensation of steam in the presence of air",
  journal="Thermal science and engineering progress",
  year="2022",
  number="30",
  pages="101248--101248",
  doi="10.1016/j.tsep.2022.101248",
  issn="2451-9049",
  url="https://www.sciencedirect.com/science/article/pii/S2451904922000555"
}