Publication detail

A Method for Cheating Indication in Unproctored On-Line Exams

KOMOSNÝ, D. REHMAN, S.

Original Title

A Method for Cheating Indication in Unproctored On-Line Exams

Type

journal article in Web of Science

Language

English

Original Abstract

COVID-19 has disrupted every field of life and education is not immune to it. Student learning and examinations moved on-line on a few weeks notice, which has created a large workload for academics to grade the assessments and manually detect students’ dishonesty. In this paper, we propose a method to automatically indicate cheating in unproctored on-line exams, when somebody else other than the legitimate student takes the exam. The method is based on the analysis of the student’s on-line traces, which are logged by distance education systems. We work with customized IP geolocation and other data to derive the student’s cheating risk score. We apply the method to approx. 3600 students in 22 courses, where the partial or final on-line exams were unproctored. The found cheating risk scores are presented along with examples of indicated cheatings. The method can be used to select students for knowledge re-validation, or to compare student cheating across courses, age groups, countries, and universities. We compared student cheating risk scores between four academic terms, including two terms of university closure due to COVID-19.

Keywords

network; end device; location; IP address; cheating; e-learning; exam; Moodle; COVID-19; lockdown

Authors

KOMOSNÝ, D.; REHMAN, S.

Released

15. 1. 2022

Publisher

MDPI

Location

Basel, Switzerland

ISBN

1424-8220

Periodical

SENSORS

Year of study

22

Number

2

State

Swiss Confederation

Pages from

1

Pages to

18

Pages count

18

URL

Full text in the Digital Library

BibTex

@article{BUT175956,
  author="Dan {Komosný} and Saeed {Rehman}",
  title="A Method for Cheating Indication in Unproctored On-Line Exams",
  journal="SENSORS",
  year="2022",
  volume="22",
  number="2",
  pages="1--18",
  doi="10.3390/s22020654",
  issn="1424-8220",
  url="https://www.mdpi.com/1424-8220/22/2/654"
}