Publication detail

Implications of unconventional setting conditions on the mechanical strength of synthetic bone grafts produced with self-hardening calcium phosphate pastes

KASHIMBETOVA, A. SLÁMEČKA, K. CASAS LUNA, M. OLIVER-URRUTIA, C. RAVASZOVÁ, S. DVOŘÁK, K. ČELKO, L. MONTUFAR JIMENEZ, E.

Original Title

Implications of unconventional setting conditions on the mechanical strength of synthetic bone grafts produced with self-hardening calcium phosphate pastes

Type

journal article in Web of Science

Language

English

Original Abstract

Work presents the effects of several factors on the mechanical strength of a calcium phosphate cement (CPC) based on alpha tricalcium phosphate and correlates the results with the microstructure and percentage of conversion to hydroxyapatite. Conversion rate increased by raising the setting temperature in the studied range (4–90 °C), but the strength exhibited an increasing-decreasing trend due to changes in the morphology of hydrated crystals. Plate-like crystals were formed in the range of 22–60 °C, mechanically reinforcing the material, whereas the formation and refinement of needle-like crystals at higher setting temperature decreased the strength. Moreover, cements with dissimilar particle sizes had different optimal hydrolysis temperatures that resulted in the maximum strength. The finest powder led to higher strength at lower setting temperature due to the formation of a more compact crystal network and higher conversion. Therefore, optimization of powder particle size may allow to achieve the highest possible strength at room temperature, being beneficial for the production of the strongest pre-set CPC-based implants without the use of energy. Furthermore, the particle size can be also engineered to produce formulations that develop the highest strength at physiological temperature, with application as injectable bone grafts. The incorporation and crosslinking of gelatine further increased the mechanical strength of pre-set cements by bridging the hydroxyapatite crystals, the setting temperature showing a similar effect to that of gelatine-free cements. In contrast, moisture decreased the strength and reduced the brittleness by solvating intramolecular association between hydroxyapatite crystals and between gelatine molecules. Moreover, large cement bodies were slightly weaker than small ones, but the size effect was not statistically significant.

Keywords

Bone cement; Calcium phosphate; Cements; Fracture mechanics; Morphology; Particle size; Setting; Strength of materials

Authors

KASHIMBETOVA, A.; SLÁMEČKA, K.; CASAS LUNA, M.; OLIVER-URRUTIA, C.; RAVASZOVÁ, S.; DVOŘÁK, K.; ČELKO, L.; MONTUFAR JIMENEZ, E.

Released

1. 3. 2022

Publisher

Elsevier Ltd and Techna Group S.r.l.

Location

Spojené království Velké Británie a Severního Irska

ISBN

0272-8842

Periodical

Ceramics International

Year of study

48

Number

2022

State

United Kingdom of Great Britain and Northern Ireland

Pages from

6225

Pages to

6235

Pages count

11

URL

BibTex

@article{BUT176438,
  author="Adelia {Kashimbetova} and Karel {Slámečka} and Mariano {Casas Luna} and Carolina {Oliver Urrutia} and Simona {Ravaszová} and Karel {Dvořák} and Ladislav {Čelko} and Edgar Benjamin {Montufar Jimenez}",
  title="Implications of unconventional setting conditions on the mechanical strength of synthetic bone grafts produced with self-hardening calcium phosphate pastes",
  journal="Ceramics International",
  year="2022",
  volume="48",
  number="2022",
  pages="6225--6235",
  doi="10.1016/j.ceramint.2021.11.163",
  issn="0272-8842",
  url="https://www.sciencedirect.com/science/article/pii/S027288422103580X?pes=vor"
}