Publication detail

Cardi-Net: A Deep Neural Network for classification of Cardiac disease using Phonocardiogram Signal

KHAN, J. KAUSHIK, M. CHAURASIA, A. DUTTA, M. BURGET, R.

Original Title

Cardi-Net: A Deep Neural Network for classification of Cardiac disease using Phonocardiogram Signal

Type

journal article in Web of Science

Language

English

Original Abstract

Background and objectives The lack of medical facilities in isolated areas makes many patients remain aloof from quick and timely diagnosis of cardiovascular diseases, leading to high mortality rates. A deep learning based method for automatic diagnosis of multiple cardiac diseases from Phonocardiogram (PCG) signals is proposed in this paper. Methods The proposed system is a combination of deep learning based convolutional neural network (CNN) and power spectrogram Cardi-Net, which can extract deep discriminating features of PCG signals from the power spectrogram to identify the diseases. The choice of Power Spectral Density (PSD) makes the model extract highly discriminatory features significant for the multi-classification of four common cardiac disorders. Results Data augmentation techniques are applied to make the model robust, and the model undergoes 10-fold cross-validation to yield an overall accuracy of 98.879% on the test dataset to diagnose multi heart diseases from PCG signals. Conclusion The proposed model is completely automatic, where signal pre-processing and feature engineering are not required. The conversion time of power spectrogram from PCG signals is very low range from 0.10 sec to 0.11 sec. This reduces the complexity of the model, making it highly reliable and robust for real-time applications. The proposed architecture can be deployed on cloud and a low cost processor, desktop, android app leading to proper access to the dispensaries in remote areas.

Keywords

Phonocardiogram; Data augmentation; Power spectrogram; Deep learning; Cardiac disorders

Authors

KHAN, J.; KAUSHIK, M.; CHAURASIA, A.; DUTTA, M.; BURGET, R.

Released

1. 12. 2020

Publisher

Elsevier Ireland Ltd

ISBN

0169-2607

Periodical

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE

Year of study

219

Number

1

State

Kingdom of the Netherlands

Pages from

1

Pages to

11

Pages count

11

URL

BibTex

@article{BUT177050,
  author="Juwairiya Siraj {Khan} and Manoj {Kaushik} and Anushka {Chaurasia} and Malay Kishore {Dutta} and Radim {Burget}",
  title="Cardi-Net: A Deep Neural Network for classification of Cardiac disease using Phonocardiogram Signal",
  journal="COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE",
  year="2020",
  volume="219",
  number="1",
  pages="1--11",
  doi="10.1016/j.cmpb.2022.106727",
  issn="0169-2607",
  url="https://www.sciencedirect.com/science/article/abs/pii/S0169260720315832"
}