Přístupnostní navigace
E-application
Search Search Close
Publication detail
DIBLÍK, J. BAŠTINEC, J.
Original Title
Bounded solutions of fractional discrete equations of positive non-integer orders
Type
conference paper
Language
English
Original Abstract
The paper considers a linear fractional discrete equation x^α x(n + 1) = λx(n) + δ(n), n = 0, 1,... where Δ^α is the fractional α-order difference, α > 0, λ ∈ R and δ: {0, 1,...} → R. A problem is considered of the existence of a solution x: {0, 1,...} → R satisfying |x(n)| < M, n = 0, 1,..., where M is a constant. This problem is also considered for an equation Δα x(n + 1) = λ(n)x(n) + δ(n, x(n), x(n − 1),..., x(0)), n = 0, 1,..., where λ: {0, 1,...} → R, δ: {0, 1,..., n} × R × R × ... × R, (n+1 times)→ R, generalizing the previous one.
Keywords
discrete equation; fractional equation; bounded solution; existence of a solution.
Authors
DIBLÍK, J.; BAŠTINEC, J.
Released
6. 4. 2022
Location
Melville (USA)
ISBN
978-0-7354-4182-8
Book
ICNAAM 2020 PROCEEDINGS - AIP CP Volume 2425
0094-243X
Periodical
AIP conference proceedings
Year of study
2245
Number
1
State
United States of America
Pages from
270003-1
Pages to
270003-4
Pages count
4
URL
https://doi.org/10.1063/5.0081310