Přístupnostní navigace
E-application
Search Search Close
Publication detail
DIBLÍK, J. KOROBKO, E.
Original Title
Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type.
Type
conference paper
Language
English
Original Abstract
The paper discusses a discrete equation of an Emden-Fowler type $\Delta^2 v(k) = -k^3(\Delta v(k))^3$, where $v$ is a dependent variable, $k$ is an integer-valued independent variable, $\Delta$ v and $\Delta^2 v$ are the first and second-order forward differences of $v$, respectively. The paper aims to prove the existence of a nontrivial and vanishing solution for $k \to \infty$. The equation is transformed into a system of two first-order difference equations, which makes it possible to apply previously known results when investigating the system.
Keywords
difference equation; Emden-Fowler type equation; asymptotic behaviour
Authors
DIBLÍK, J.; KOROBKO, E.
Released
26. 4. 2022
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-6029-4
Book
Proceedings I of the 28th Conference STUDENT EEICT 2022 General papers
Edition
1
2788-1334
Periodical
Proceedings II of the Conference STUDENT EEICT
State
Czech Republic
Pages from
363
Pages to
367
Pages count
5
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1_v2.pdf
BibTex
@inproceedings{BUT178253, author="Josef {Diblík} and Evgeniya {Korobko}", title="Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type.", booktitle="Proceedings I of the 28th Conference STUDENT EEICT 2022 General papers", year="2022", series="1", journal="Proceedings II of the Conference STUDENT EEICT", pages="363--367", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-6029-4", issn="2788-1334", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1_v2.pdf" }