Publication detail

Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type.

DIBLÍK, J. KOROBKO, E.

Original Title

Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type.

Type

conference paper

Language

English

Original Abstract

The paper discusses a discrete equation of an Emden-Fowler type $\Delta^2 v(k) = -k^3(\Delta v(k))^3$, where $v$ is a dependent variable, $k$ is an integer-valued independent variable, $\Delta$ v and $\Delta^2 v$ are the first and second-order forward differences of $v$, respectively. The paper aims to prove the existence of a nontrivial and vanishing solution for $k \to \infty$. The equation is transformed into a system of two first-order difference equations, which makes it possible to apply previously known results when investigating the system.

Keywords

difference equation; Emden-Fowler type equation; asymptotic behaviour

Authors

DIBLÍK, J.; KOROBKO, E.

Released

26. 4. 2022

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

Location

Brno

ISBN

978-80-214-6029-4

Book

Proceedings I of the 28th Conference STUDENT EEICT 2022 General papers

Edition

1

ISBN

2788-1334

Periodical

Proceedings II of the Conference STUDENT EEICT

State

Czech Republic

Pages from

363

Pages to

367

Pages count

5

URL

BibTex

@inproceedings{BUT178253,
  author="Josef {Diblík} and Evgeniya {Korobko}",
  title="Vanishing solutions of a second-order discrete non-linear equation
of Emden-Fowler type.",
  booktitle="Proceedings I of the 28th Conference STUDENT EEICT 2022 General papers",
  year="2022",
  series="1",
  journal="Proceedings II of the Conference STUDENT EEICT",
  pages="363--367",
  publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií",
  address="Brno",
  isbn="978-80-214-6029-4",
  issn="2788-1334",
  url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1_v2.pdf"
}