Publication detail

Geometric algebra methods in volumetric accuracy analysis

NAVRÁTILOVÁ, B. BYRTUS, R. HOLUB, M.

Original Title

Geometric algebra methods in volumetric accuracy analysis

Type

journal article in Web of Science

Language

English

Original Abstract

With the help of plane geometric algebra, we see volumetric errors as pure geometric objects. We use this identification to expand errors with respect to Abbe's principle into the whole working space with respect to some additional conditions. We show that geometric algebra helps us to understand errors in kinematics chains. We demonstrate our approach on a model example.

Keywords

kinematic chain; machine tool; plane geometric algebra; quaternions; volumetric precision

Authors

NAVRÁTILOVÁ, B.; BYRTUS, R.; HOLUB, M.

Released

25. 6. 2022

Publisher

John Wiley and Sons

Location

HOBOKEN

ISBN

1099-1476

Periodical

Mathematical Methods in the Applied Sciences

Year of study

2022

Number

2022

State

United Kingdom of Great Britain and Northern Ireland

Pages from

1

Pages to

12

Pages count

12

URL

BibTex

@article{BUT178482,
  author="Barbora {Navrátilová} and Roman {Byrtus} and Michal {Holub}",
  title="Geometric algebra methods in volumetric accuracy analysis",
  journal="Mathematical Methods in the Applied Sciences",
  year="2022",
  volume="2022",
  number="2022",
  pages="1--12",
  doi="10.1002/mma.8494",
  issn="1099-1476",
  url="https://onlinelibrary.wiley.com/doi/10.1002/mma.8494"
}