Přístupnostní navigace
E-application
Search Search Close
Publication detail
KIM, J. MAYORGA-MARTINEZ, C. VYSKOČIL, J. RŮŽEK, D. PUMERA, M.
Original Title
Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout
Type
journal article in Web of Science
Language
English
Original Abstract
The coronavirus disease 2019 (COVID-19) has prompted an urgent demand for nanotechnological solutions towards the global healthcare crisis, particularly in the field of diagnostics, vaccines, and therapeutics. As an emerging tool for nanoscience and technology, micro/nanorobots have demonstrated advanced performances, such as self-propelling, precise maneuverability, and remote actuation, thus hold great potential to provide breakthroughs in the COVID-19 pandemic. Here we show a plasmonic-magnetic nanorobot-based simple and efficient COVID-19 detection assay through an electronic readout signal. The nanorobots consist of Fe3O4 backbone and the outer surface of Ag, that rationally designed to perform magnetic-powered propulsion and navigation, concomitantly the probe nucleic acids transport and release upon the hybridization which can be quantified with the differential pulse voltammetry (DPV) technique. The magnetically actuated nanorobots swarming enables enhanced micromixing and active targeting, thereby promoting binding kinetics. Experimental results verified the enhanced sensing efficiency, with nanomolar detection limit and high selectivity. Further testing with extracted SARS-CoV-2 viral RNA samples validated the clinical applicability of the proposed assay. This strategy is versatile to extend targeting various nucleic acids, thus it could be a promising detection tool for other emerging pathogens, environmental toxins, and forensic analytes. (C) 2022 Elsevier Ltd. All rights reserved.
Keywords
Micromotors; COVID-19; Iron oxides; Transversal rotating magnetic field; Biosensing
Authors
KIM, J.; MAYORGA-MARTINEZ, C.; VYSKOČIL, J.; RŮŽEK, D.; PUMERA, M.
Released
1. 6. 2022
Publisher
ELSEVIER
Location
AMSTERDAM
ISBN
2352-9407
Periodical
Applied Materials Today
Year of study
27
Number
1
State
Kingdom of the Netherlands
Pages from
101402-1
Pages to
101402-8
Pages count
8
URL
https://www.sciencedirect.com/science/article/pii/S2352940722000415?via%3Dihub