Publication detail

Light Stimulation of Neurons on Organic Photocapacitors Induces Action Potentials with Millisecond Precision

SCHMIDT, T. JAKEŠOVÁ, M. DEREK, V. KORNMUELLER, K. TIAPKO, O. BISCHOF, H. BURGSTALLER, S. WALDHERR, L. NOWAKOWSKA, M. BAUMGARTNER, C. UCAL, M. LEITINGER, G. SCHERUEBEL, S. PATZ, S. MALLI, R. GLOWACKI, E. RIENMUELLER, T. SCHINDL, R.

Original Title

Light Stimulation of Neurons on Organic Photocapacitors Induces Action Potentials with Millisecond Precision

Type

journal article in Web of Science

Language

English

Original Abstract

Nongenetic optical control of neurons is a powerful technique to study and manipulate the function of the nervous system. This research has benchmarked the performance of organic electrolytic photocapacitor (OEPC) optoelectronic stimulators at the level of single mammalian cells: human embryonic kidney (HEK) cells with heterologously expressed voltage-gated K+ channels and hippocampal primary neurons. OEPCs act as extracellular stimulation electrodes driven by deep red light. The electrophysiological recordings show that millisecond light stimulation of OEPC shifts conductance-voltage plots of voltage-gated K+ channels by approximate to 30 mV. Models are described both for understanding the experimental findings at the level of K+ channel kinetics in HEK cells, as well as elucidating interpretation of membrane electrophysiology obtained during stimulation with an electrically floating extracellular photoelectrode. A time-dependent increase in voltage-gated channel conductivity in response to OEPC stimulation is demonstrated. These findings are then carried on to cultured primary hippocampal neurons. It is found that millisecond time-scale optical stimuli trigger repetitive action potentials in these neurons. The findings demonstrate that OEPC devices enable the manipulation of neuronal signaling activities with millisecond precision. OEPCs can therefore be integrated into novel in vitro electrophysiology protocols, and the findings can inspire in vivo applications.

Keywords

bioelectronics; light stimulation; neuronal excitation; OEPC device; photocapacitor; voltage-gated ion channels

Authors

SCHMIDT, T.; JAKEŠOVÁ, M.; DEREK, V.; KORNMUELLER, K.; TIAPKO, O.; BISCHOF, H.; BURGSTALLER, S.; WALDHERR, L.; NOWAKOWSKA, M.; BAUMGARTNER, C.; UCAL, M.; LEITINGER, G.; SCHERUEBEL, S.; PATZ, S.; MALLI, R.; GLOWACKI, E.; RIENMUELLER, T.; SCHINDL, R.

Released

1. 9. 2022

Publisher

WILEY

Location

HOBOKEN

ISBN

2365-709X

Periodical

Advanced Materials Technologies

Year of study

7

Number

9

State

United States of America

Pages from

2101159

Pages to

2101174

Pages count

16

URL

BibTex

@article{BUT179273,
  author="SCHMIDT, T. and JAKEŠOVÁ, M. and DEREK, V. and KORNMUELLER, K. and TIAPKO, O. and BISCHOF, H. and BURGSTALLER, S. and WALDHERR, L. and NOWAKOWSKA, M. and BAUMGARTNER, C. and UCAL, M. and LEITINGER, G. and SCHERUEBEL, S. and PATZ, S. and MALLI, R. and GLOWACKI, E. and RIENMUELLER, T. and SCHINDL, R.",
  title="Light Stimulation of Neurons on Organic Photocapacitors Induces Action Potentials with Millisecond Precision",
  journal="Advanced Materials Technologies",
  year="2022",
  volume="7",
  number="9",
  pages="16",
  doi="10.1002/admt.202101159",
  issn="2365-709X",
  url="https://onlinelibrary.wiley.com/doi/10.1002/admt.202101159"
}