Přístupnostní navigace
E-application
Search Search Close
Publication detail
VIČAR, T. JAKUBÍČEK, R. CHMELÍK, J. KOLÁŘ, R.
Original Title
Registration of medical image sequences using auto-differentiation
Type
conference paper
Language
English
Original Abstract
This paper focuses on image registration using the automatic differentiation of deep learning frameworks. Specifically, a method for the registration of image sequences is proposed and tested on retinal video ophthalmoscopic data and brain DCE MR images. PyTorch auto-differentiation has been used as a core of an optimisation tool to find the optimal image transformation parameters. It allows us to easily design a loss function for our registration tasks. The image registration was achieved by simultaneous registration of all images using a global loss function without the need of the reference frame.
Keywords
medical image registration; auto-differentiation; deep learning frameworks; gradient-based optimisation; video stabilisation
Authors
VIČAR, T.; JAKUBÍČEK, R.; CHMELÍK, J.; KOLÁŘ, R.
Released
21. 12. 2023
Publisher
Springer
ISBN
978-981-16-6774-9
Book
Medical Imaging and Computer-Aided Diagnosis: Proceedings of 2022 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2022)
Edition
1
1876-1100
Periodical
Lecture notes in Electrical Engineering
Year of study
810
State
United Kingdom of Great Britain and Northern Ireland
Pages from
169
Pages to
178
Pages count
10
URL
https://link.springer.com/chapter/10.1007/978-981-16-6775-6_15
BibTex
@inproceedings{BUT180041, author="Tomáš {Vičar} and Roman {Jakubíček} and Jiří {Chmelík} and Radim {Kolář}", title="Registration of medical image sequences using auto-differentiation", booktitle="Medical Imaging and Computer-Aided Diagnosis: Proceedings of 2022 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2022)", year="2023", series="1", journal="Lecture notes in Electrical Engineering", volume="810", pages="169--178", publisher="Springer", doi="10.1007/978-981-16-6775-6\{_}15", isbn="978-981-16-6774-9", issn="1876-1100", url="https://link.springer.com/chapter/10.1007/978-981-16-6775-6_15" }