Přístupnostní navigace
E-application
Search Search Close
Publication detail
VRÁBEL, J. KÉPEŠ, E. POŘÍZKA, P. KAISER, J.
Original Title
Towards interpretability of ANNs for spectroscopic data: inductive bias, lottery tickets, and input optimization
Type
abstract
Language
English
Original Abstract
The interpretability of Artificial Neural Network (ANN) –based models remains a challenging task not only for spectroscopic data. We study and compare several distinct approaches that provide an improved understanding of the model’s (fully-connected network) predictions in supervised tasks and relate them to spectroscopic expertise. Namely, a weight initialization by modeled spectra and custom loss function penalization enable interpretation of the first hidden layer of the network. Additionally, lottery tickets (i.e. iteratively pruned networks) are used to reveal a local structure and positions of relevant features. The results are critically evaluated and compared to a baseline approach (feature visualization by input optimization).
Keywords
spectroscopic data, machine learning, interpretability, artificial neural networks
Authors
VRÁBEL, J.; KÉPEŠ, E.; POŘÍZKA, P.; KAISER, J.
Released
1. 8. 2022
BibTex
@misc{BUT180067, author="Jakub {Vrábel} and Erik {Képeš} and Pavel {Pořízka} and Jozef {Kaiser}", title="Towards interpretability of ANNs for spectroscopic data: inductive bias, lottery tickets, and input optimization", year="2022", note="abstract" }