Přístupnostní navigace
E-application
Search Search Close
Publication detail
ROSICKÝ, J. LIEBERMAN, M. ZAMBRANO, P.
Original Title
Tameness in generalized metric structures
Type
journal article in Web of Science
Language
English
Original Abstract
We broaden the framework of metric abstract elementary classes (mAECs) in several essential ways, chiefly by allowing the metric to take values in a well-behaved quantale. As a proof of concept we show that the result of Boney and Zambrano (Around the set-theoretical consistency of d-tameness of metric abstract elementary classes, arXiv:1508.05529, 2015) on (metric) tameness under a large cardinal assumption holds in this more general context. We briefly consider a further generalization to partial metric spaces, and hint at connections to classes of fuzzy structures, and structures on sheaves.
Keywords
Abstract model theory; Metric abstract elementary classes; Metric structures; Quantales; Quantale-valued metrics; Tameness
Authors
ROSICKÝ, J.; LIEBERMAN, M.; ZAMBRANO, P.
Released
22. 10. 2022
Publisher
SPRINGER HEIDELBERG
Location
HEIDELBERG
ISBN
1432-0665
Periodical
ARCHIVE FOR MATHEMATICAL LOGIC
Year of study
22.10.2022
Number
State
Federal Republic of Germany
Pages count
28
URL
https://link.springer.com/article/10.1007/s00153-022-00852-4
BibTex
@article{BUT180123, author="Jiří {Rosický} and Michael Joseph {Lieberman} and Pedro {Zambrano}", title="Tameness in generalized metric structures", journal="ARCHIVE FOR MATHEMATICAL LOGIC", year="2022", volume="22.10.2022", number="22.10.2022", pages="28", doi="10.1007/s00153-022-00852-4", issn="1432-0665", url="https://link.springer.com/article/10.1007/s00153-022-00852-4" }