Přístupnostní navigace
E-application
Search Search Close
Publication detail
VOŘECHOVSKÝ, M.
Original Title
Reliability analysis of discrete-state performance functions via adaptive sequential sampling with detection of failure surfaces
Type
journal article in Web of Science
Language
English
Original Abstract
The paper presents a new efficient and robust method for rare event probability estimation for computational models of an engineering product or a process returning categorical information only, for example, either success or failure. For such models, most of the methods designed for the estimation of failure probability, which use the numerical value of the outcome to compute gradients or to estimate the proximity to the failure surface, cannot be applied. Even if the performance function provides more than just binary output, the state of the system may be a non-smooth or even a discontinuous function defined in the domain of continuous input variables. This often happens because the mathematical model features non-smooth components or discontinuities (e.g., in the constitutive laws), bifurcations, or even domains in which no reasonable model response is obtained. In these cases, the classical gradient-based methods usually fail. We propose a simple yet efficient algorithm, which performs a sequential adaptive selection of points from the input domain of random variables to extend and refine a simple distance-based surrogate model. Two different tasks can be accomplished at any stage of sequential sampling: (i) estimation of the failure probability, and (ii) selection of the best possible candidate for the subsequent model evaluation if further improvement is necessary. The proposed criterion for selecting the next point for model evaluation maximizes the expected probability classified by using the candidate. Therefore, the perfect balance between global exploration and local exploitation is maintained automatically. If there are more rare events such as failure modes, the method can be generalized to estimate the probabilities of all these event types. Moreover, when the numerical value of model evaluation can be used to build a smooth surrogate, the algorithm can accommodate this information to increase the accuracy of the estimated probabilities. Lastly, we define a new simple yet general geometrical measure of the global sensitivity of the rare-event probability to individual variables, which is obtained as a by-product of the proposed refinement algorithm.(c) 2022 Elsevier B.V. All rights reserved.
Keywords
Categorical limit state function; criterion for experimental design extension; Failure surface refinement; Nearest neighbor surrogate model; Importance sampling; Global sensitivity
Authors
Released
1. 10. 2022
Publisher
ELSEVIER SCIENCE SA
Location
LAUSANNE
ISBN
0045-7825
Periodical
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Year of study
401
Number
115606
State
Kingdom of the Netherlands
Pages count
46
URL
https://doi.org/10.1016/j.cma.2022.115606
BibTex
@article{BUT180129, author="Miroslav {Vořechovský}", title="Reliability analysis of discrete-state performance functions via adaptive sequential sampling with detection of failure surfaces", journal="COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING", year="2022", volume="401", number="115606", pages="46", doi="10.1016/j.cma.2022.115606", issn="0045-7825", url="https://doi.org/10.1016/j.cma.2022.115606" }