Publication detail

Reliability analysis of discrete-state performance functions via adaptive sequential sampling with detection of failure surfaces

VOŘECHOVSKÝ, M.

Original Title

Reliability analysis of discrete-state performance functions via adaptive sequential sampling with detection of failure surfaces

Type

journal article in Web of Science

Language

English

Original Abstract

The paper presents a new efficient and robust method for rare event probability estimation for computational models of an engineering product or a process returning categorical information only, for example, either success or failure. For such models, most of the methods designed for the estimation of failure probability, which use the numerical value of the outcome to compute gradients or to estimate the proximity to the failure surface, cannot be applied. Even if the performance function provides more than just binary output, the state of the system may be a non-smooth or even a discontinuous function defined in the domain of continuous input variables. This often happens because the mathematical model features non-smooth components or discontinuities (e.g., in the constitutive laws), bifurcations, or even domains in which no reasonable model response is obtained. In these cases, the classical gradient-based methods usually fail. We propose a simple yet efficient algorithm, which performs a sequential adaptive selection of points from the input domain of random variables to extend and refine a simple distance-based surrogate model. Two different tasks can be accomplished at any stage of sequential sampling: (i) estimation of the failure probability, and (ii) selection of the best possible candidate for the subsequent model evaluation if further improvement is necessary. The proposed criterion for selecting the next point for model evaluation maximizes the expected probability classified by using the candidate. Therefore, the perfect balance between global exploration and local exploitation is maintained automatically. If there are more rare events such as failure modes, the method can be generalized to estimate the probabilities of all these event types. Moreover, when the numerical value of model evaluation can be used to build a smooth surrogate, the algorithm can accommodate this information to increase the accuracy of the estimated probabilities. Lastly, we define a new simple yet general geometrical measure of the global sensitivity of the rare-event probability to individual variables, which is obtained as a by-product of the proposed refinement algorithm.(c) 2022 Elsevier B.V. All rights reserved.

Keywords

Categorical limit state function; criterion for experimental design extension; Failure surface refinement; Nearest neighbor surrogate model; Importance sampling; Global sensitivity

Authors

VOŘECHOVSKÝ, M.

Released

1. 10. 2022

Publisher

ELSEVIER SCIENCE SA

Location

LAUSANNE

ISBN

0045-7825

Periodical

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

Year of study

401

Number

115606

State

Kingdom of the Netherlands

Pages count

46

URL

BibTex

@article{BUT180129,
  author="Miroslav {Vořechovský}",
  title="Reliability analysis of discrete-state performance functions via adaptive sequential sampling with detection of failure surfaces",
  journal="COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING",
  year="2022",
  volume="401",
  number="115606",
  pages="46",
  doi="10.1016/j.cma.2022.115606",
  issn="0045-7825",
  url="https://doi.org/10.1016/j.cma.2022.115606"
}