Publication detail
Unrolled L+S decomposition for compressed sensing in magnetic resonance imaging
MOKRÝ, O. VITOUŠ, J.
Original Title
Unrolled L+S decomposition for compressed sensing in magnetic resonance imaging
Type
journal article - other
Language
English
Original Abstract
A deep unrolled reconstruction method for dynamic magnetic resonance imaging is developed, based on the low-rank + sparse model. A standard solver of this model is enriched with trainable structures, forming a deep neural network, and several variants of the unrolled algorithm are trained on a simulated dataset. Evaluation against the standard solver for the model shows improvement in terms of mean squared error with the same computational cost.
Keywords
magnetic resonance imaging, L+S model, reconstruction, unrolled optimization
Authors
MOKRÝ, O.; VITOUŠ, J.
Released
12. 12. 2022
Publisher
International Society for Science and Engineering, o.s.
Location
Brno
ISBN
1213-1539
Periodical
Elektrorevue - Internetový časopis (http://www.elektrorevue.cz)
Year of study
24
Number
3
State
Czech Republic
Pages from
86
Pages to
93
Pages count
8
URL
BibTex
@article{BUT180329,
author="Ondřej {Mokrý} and Jiří {Vitouš}",
title="Unrolled L+S decomposition for compressed sensing in magnetic resonance imaging",
journal="Elektrorevue - Internetový časopis (http://www.elektrorevue.cz)",
year="2022",
volume="24",
number="3",
pages="86--93",
issn="1213-1539",
url="http://www.elektrorevue.cz/cz/clanky/zpracovani-signalu/0/unrolled-l-s-decomposition-for-compressed-sensing-in-magnetic-resonance-imaging--rozbaleny-l-s-rozklad-pro-komprimovane-snimani-pri-zobrazovani-magnetickou-rezonanci-/"
}