Přístupnostní navigace
E-application
Search Search Close
Publication detail
SKALSKÝ, M. HNIDKA, J. HAVRÁNEK, Z.
Original Title
Improvement of the Temperature Stability of the Erbium-Doped Superfluorescent Fiber Source by Tuning the Reflectivity of the Fiber End
Type
journal article in Web of Science
Language
English
Original Abstract
A novel and simple way of improving the mean wavelength temperature stability of the erbium-doped superfluorescent source is described and demonstrated. We show that by introducing small reflectivity feedback at the unpumped fiber end in the backward-pump superfluorescent source configuration, we can affect an overall temperature dependency of the mean wavelength of the output spectrum. The reflectivity adjustment can be made by an angled fiber cleave, varying the reflectivity between 0 to 4 %, or by a fusion arc, allowing its finer adjustment. With this approach, we were able to arbitrarily adjust the mean wavelength temperature trend from -4.38 to 5.23 ppm/ ∘ C. Furthermore, an optimal reflectivity was attained, providing almost zero trend and reducing the total mean wavelength variation to 130 ppm over the temperature range of -40 to +100 ∘ C, which is a 5.7-fold and 4.4-fold improvement compared to 0 ∘ and a standard 8 ∘ fiber cleave angle, respectively. By avoiding any filtering components, a wide bandwidth of 37.8 nm and a power efficiency of 22% was reached. Since the proposed configuration does not include any extra components compared to the basic backward-pump configuration, it can be a viable solution for cost-efficient applications, such as, e.g., medium-grade fiber-optic gyroscopes. A benefit for these gyroscopes is the tunability of the source wavelength temperature dependency which can conveniently compensate the gyro coil temperature sensitivity.
Keywords
Er-doped superfluorescent source, fiber-optic gyroscope, temperature stability, cleave angle, reflectivity, doublepass
Authors
SKALSKÝ, M.; HNIDKA, J.; HAVRÁNEK, Z.
Released
15. 3. 2023
Publisher
IEEE
Location
New York, USA
ISBN
1558-2213
Periodical
JOURNAL OF LIGHTWAVE TECHNOLOGY
Year of study
41
Number
6
State
United States of America
Pages from
1843
Pages to
1850
Pages count
8
URL
https://ieeexplore.ieee.org/document/9968288
Full text in the Digital Library
http://hdl.handle.net/11012/209120
BibTex
@article{BUT180640, author="Michal {Skalský} and Jakub {Hnidka} and Zdeněk {Havránek}", title="Improvement of the Temperature Stability of the Erbium-Doped Superfluorescent Fiber Source by Tuning the Reflectivity of the Fiber End", journal="JOURNAL OF LIGHTWAVE TECHNOLOGY", year="2023", volume="41", number="6", pages="1843--1850", doi="10.1109/JLT.2022.3226206", issn="1558-2213", url="https://ieeexplore.ieee.org/document/9968288" }