Přístupnostní navigace
E-application
Search Search Close
Publication detail
LIEBERMAN, M. VASEY, S. ROSICKÝ, J.
Original Title
CELLULAR CATEGORIES AND STABLE INDEPENDENCE
Type
journal article in Web of Science
Language
English
Original Abstract
We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin-Eklof-Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.
Keywords
cellular categories; forking; stable independence; abstract elementary class; cofibrantly generated; roots of Ext
Authors
LIEBERMAN, M.; VASEY, S.; ROSICKÝ, J.
Released
18. 5. 2022
Publisher
CAMBRIDGE UNIV PRESS
Location
CAMBRIDGE
ISBN
1943-5886
Periodical
JOURNAL OF SYMBOLIC LOGIC
Year of study
18.05.2022
Number
State
United States of America
Pages count
24
URL
http://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/cellular-categories-and-stable-independence/CAE1BCB1D51CBDFE69996abs5429970A177
BibTex
@article{BUT181492, author="Michael Joseph {Lieberman} and Sebastien {Vasey} and Jiří {Rosický}", title="CELLULAR CATEGORIES AND STABLE INDEPENDENCE", journal="JOURNAL OF SYMBOLIC LOGIC", year="2022", volume="18.05.2022", number="18.05.2022", pages="24", doi="10.1017/jsl.2022.40", issn="1943-5886", url="http://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/cellular-categories-and-stable-independence/CAE1BCB1D51CBDFE69996abs5429970A177" }