Přístupnostní navigace
E-application
Search Search Close
Publication detail
LIEBERMAN, M. VASEY, S. ROSICKÝ, J.
Original Title
Hilbert spaces and C*-algebras are not finitely concrete
Type
journal article in Web of Science
Language
English
Original Abstract
We show that no faithful functor from the category of Hilbert spaces with injective linear contractions into the category of sets preserves directed colimits. Thus Hilbert spaces cannot form an abstract elementary class, even up to change of language. We deduce an analogous result for the category of commutative unital C*- algebras with *-homomorphisms. This implies, in particular, that this category is not axiomatizable by a first-order theory, a strengthening of a conjecture of Bankston. (C) 2022 Elsevier B.V. All rights reserved.
Keywords
Hilbert space; C?-algebra; Faithful functor preserving directed colimits
Authors
LIEBERMAN, M.; VASEY, S.; ROSICKÝ, J.
Released
1. 4. 2023
Publisher
ELSEVIER
Location
AMSTERDAM
ISBN
0022-4049
Periodical
JOURNAL OF PURE AND APPLIED ALGEBRA
Year of study
227
Number
4
State
Kingdom of the Netherlands
Pages count
9
URL
http://www.sciencedirect.com/science/article/pii/S0022404922002432
BibTex
@article{BUT181494, author="Michael Joseph {Lieberman} and Sebastien {Vasey} and Jiří {Rosický}", title="Hilbert spaces and C*-algebras are not finitely concrete", journal="JOURNAL OF PURE AND APPLIED ALGEBRA", year="2023", volume="227", number="4", pages="9", doi="10.1016/j.jpaa.2022.107245", issn="0022-4049", url="http://www.sciencedirect.com/science/article/pii/S0022404922002432" }