Přístupnostní navigace
E-application
Search Search Close
Publication detail
BEREZOVSKI, V. CHEREVKO, Y. HINTERLEITNER, I. PEŠKA, P.
Original Title
Geodesic mappings onto generalized m-Ricci-symmetric spaces
Type
journal article in Web of Science
Language
English
Original Abstract
In this paper, we study geodesic mappings of spaces with affine connections onto generalized 2-, 3-, and m-Ricci-symmetric spaces. In either case, the main equations for the mappings are obtained as a closed system of linear differential equations of the Cauchy type in the covariant derivatives. For the systems, we have found the maximum number of essential parameters on which the solutions depend. These results generalize the properties of geodesic mappings onto symmetric, recurrent, and also 2-, 3-, and m-(Ricci-)symmetric spaces with affine connections.
Keywords
geodesic mapping; space with affine connections; m-Ricci-symmetric space; Cauchy-type differential equations
Authors
BEREZOVSKI, V.; CHEREVKO, Y.; HINTERLEITNER, I.; PEŠKA, P.
Released
21. 6. 2022
Publisher
MDPI
Location
Basel
ISBN
2227-7390
Periodical
Mathematics
Year of study
10
Number
13
State
Swiss Confederation
Pages from
1
Pages to
12
Pages count
URL
https://www.mdpi.com/2227-7390/10/13/2165/htm
Full text in the Digital Library
http://hdl.handle.net/11012/209257
BibTex
@article{BUT182470, author="Vladimir {Berezovski} and Yevhen {Cherevko} and Irena {Hinterleitner} and Patrik {Peška}", title="Geodesic mappings onto generalized m-Ricci-symmetric spaces", journal="Mathematics", year="2022", volume="10", number="13", pages="1--12", doi="10.3390/math10132165", issn="2227-7390", url="https://www.mdpi.com/2227-7390/10/13/2165/htm" }