Přístupnostní navigace
E-application
Search Search Close
Publication detail
PAPAGEORGIOU, N. RADULESCU, V. ZHANG, W.
Original Title
Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems
Type
journal article in Web of Science
Language
English
Original Abstract
We consider a parametric problem driven by the p-Laplacian with Robin boundary condition. We assume that the reaction can change sign and we prove an existence and multiplicity theorem which is global with respect to the parameter (a bifurcation-type theorem).
Keywords
Nonlinear regularity;nonlinear maximum principle;strong comparison;bifurcation-type theorem;truncation
Authors
PAPAGEORGIOU, N.; RADULESCU, V.; ZHANG, W.
Released
26. 4. 2023
ISBN
1422-6383
Periodical
Results in Mathematics
Year of study
78(4)
Number
133
State
Swiss Confederation
Pages from
1
Pages to
17
Pages count
URL
https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/
BibTex
@article{BUT183421, author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and Wen {Zhang}", title="Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems", journal="Results in Mathematics", year="2023", volume="78(4)", number="133", pages="1--17", doi="10.1007/s00025-023-01912-8", issn="1422-6383", url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/" }