Publication detail

Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems

PAPAGEORGIOU, N. RADULESCU, V. ZHANG, W.

Original Title

Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems

Type

journal article in Web of Science

Language

English

Original Abstract

We consider a parametric problem driven by the p-Laplacian with Robin boundary condition. We assume that the reaction can change sign and we prove an existence and multiplicity theorem which is global with respect to the parameter (a bifurcation-type theorem).

Keywords

Nonlinear regularity;nonlinear maximum principle;strong comparison;bifurcation-type theorem;truncation

Authors

PAPAGEORGIOU, N.; RADULESCU, V.; ZHANG, W.

Released

26. 4. 2023

ISBN

1422-6383

Periodical

Results in Mathematics

Year of study

78(4)

Number

133

State

Swiss Confederation

Pages from

1

Pages to

17

Pages count

17

URL

BibTex

@article{BUT183421,
  author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and Wen {Zhang}",
  title="Global Existence and Multiplicity for Nonlinear Robin Eigenvalue Problems",
  journal="Results in Mathematics",
  year="2023",
  volume="78(4)",
  number="133",
  pages="1--17",
  doi="10.1007/s00025-023-01912-8",
  issn="1422-6383",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/"
}