Publication detail

Energy aware solution for IRS-aided UAV communication in 6G wireless networks

TANEJA, A. RANI, S. HERENCSÁR, N.

Original Title

Energy aware solution for IRS-aided UAV communication in 6G wireless networks

Type

journal article in Web of Science

Language

English

Original Abstract

The rapid evolution of unmanned aerial vehicles (UAVs) is emerging as a promising technology for wireless network applications such as remote sensing, scalable network coverage, security surveillance, real-time monitoring, rescue, and emergency communications. Firstly, this article investigates the integration of intelligent reflecting surface (IRS) technology with UAVs for next generation intelligent networks. Furthermore, a framework is proposed for the integration of IRS technology with UAV-aided communication to meet the requirements of sustainable wireless networks. The proposed system aims to achieve maximum energy efficiency for a given power level and phase shift using a power consumption model. Taking into consideration the transmit power and the power consumed by the circuit components at the base station (BS), user equipment (UE), IRS and UAV, the energy efficiency of the proposed system is evaluated for different IRS reflecting elements and different UAV locations. It is shown that a UAV equipped with 150 reflecting elements improves energy efficiency by 7.47\% with 100 co-located antennas at the BS. Also, the achieved energy efficiency is maximum when the UAV is close to the BS or the communicating user equipment. The paper concludes with a use case scenario for the IRS-assisted UAVs in the context of intelligent transportation systems (ITS) in smart cities.

Keywords

Unmanned aerial vehicles; intelligent reflecting surfaces; 6G wireless networks; energy efficiency; smart radio propagation

Authors

TANEJA, A.; RANI, S.; HERENCSÁR, N.

Released

19. 6. 2023

Publisher

Elsevier

ISBN

2213-1388

Periodical

Sustainable Energy Technologies and Assessments

Year of study

58

Number

August 2023

State

United Kingdom of Great Britain and Northern Ireland

Pages from

1

Pages to

7

Pages count

7

URL

Full text in the Digital Library

BibTex

@article{BUT183715,
  author="Ashu {Taneja} and Shalli {Rani} and Norbert {Herencsár}",
  title="Energy aware solution for IRS-aided UAV communication in 6G wireless networks",
  journal="Sustainable Energy Technologies and Assessments",
  year="2023",
  volume="58",
  number="August 2023",
  pages="1--7",
  doi="10.1016/j.seta.2023.103318",
  issn="2213-1388",
  url="https://www.sciencedirect.com/science/article/pii/S2213138823003119"
}