Přístupnostní navigace
E-application
Search Search Close
Publication detail
MAJERCIK, J. SPACEK, M.
Original Title
CELL AND SUB-CELLULAR SEGMENTATION IN QUANTITATIVE PHASE IMAGING USING U-NET
Type
conference paper
Language
English
Original Abstract
Theabilitytoautomaticallysegmentimages,especiallymicroscopyimagesofcells,opens newopportunitiesincancerresearchorotherpracticalapplications.Recentadvancementsindeep learningenabledforeffectivesingle-cellsegmentation,however,automaticsegmentationofsubcellularregionsisstillchallenging.ThisworkdescribesanimplementationofaU-netneuralnetworkforlabel-freesegmentationofsub-cellularregionsonimagesofadherentprostatecancercells, specificallyPC-3and22Rv1.Usingthebestperformingapproach,outofallthathavebeentested, wehavemanagedtodistinguishbetweenobjectsandbackgroundwithaveragedicecoefficientsof 0.83,0.78and0.63forwholecells,nucleiandnucleolirespectively.
Keywords
cellsegmentation,deeplearning,neuralnetwork,quantitativephaseimaging,nucleus, nucleolus
Authors
MAJERCIK, J.; SPACEK, M.
Released
27. 4. 2021
Publisher
Brno University of Technology, Faculty of Electrical Engineering and Communication
Location
Brno
ISBN
978-80-214-5943-4
Book
PROCEEDINGS II OF THE 27TH STUDENT EEICT 2021 selected papers
Edition
1
Pages from
9
Pages to
12
Pages count
4
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2021_sbornik_2_v3_DOI.pdf
BibTex
@inproceedings{BUT183885, author="Jakub {Majerčík} and Michal {Špaček}", title="CELL AND SUB-CELLULAR SEGMENTATION IN QUANTITATIVE PHASE IMAGING USING U-NET", booktitle="PROCEEDINGS II OF THE 27TH STUDENT EEICT 2021 selected papers", year="2021", series="1", pages="9--12", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno", doi="10.13164/eeict.2021.9", isbn="978-80-214-5943-4", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2021_sbornik_2_v3_DOI.pdf" }