Přístupnostní navigace
E-application
Search Search Close
Publication detail
MÜNSTER, P. TOMAŠOV, A. DEJDAR, P. HORVÁTH, T.
Original Title
Deploying Machine Learning in Distributed Sensing to Increase Resilience of Fiber Optic Infrastructure
Type
conference paper
Language
English
Original Abstract
We report a novel approach to the security of fiber optic infrastructures utilizing state of polarization analyzes or Mach-Zehnder interferometry and using supervised or unsupervised machine-learning models for unauthorized cable manipulation detection.
Keywords
Fiber optic communications;Mach Zehnder interferometers;Neural networks;Optical networks;Phase modulation;Polarization
Authors
MÜNSTER, P.; TOMAŠOV, A.; DEJDAR, P.; HORVÁTH, T.
Released
7. 5. 2023
Publisher
Optica Publishing Group
Location
San Jose, CA, USA
ISBN
978-1-957171-25-8
Book
2023 Conference on Lasers and Electro-Optics (CLEO)
Pages count
2
URL
https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2023-JW2A.102
BibTex
@inproceedings{BUT184183, author="Petr {Münster} and Adrián {Tomašov} and Petr {Dejdar} and Tomáš {Horváth}", title="Deploying Machine Learning in Distributed Sensing to Increase Resilience of Fiber Optic Infrastructure", booktitle="2023 Conference on Lasers and Electro-Optics (CLEO)", year="2023", pages="2", publisher="Optica Publishing Group", address="San Jose, CA, USA", isbn="978-1-957171-25-8", url="https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2023-JW2A.102" }