Přístupnostní navigace
E-application
Search Search Close
Publication detail
JURÁKOVÁ, J. FELLNER, O. SCHLITTENHARDT, S. VAVREČKOVÁ, Š. NEMEC, I. HERCHEL, R. ČIŽMÁR, E. SANTANA, V. ORLITA, M. GENTILI, D. RUANI, G. CAVALLINI, M. NEUGEBAUER, P. RUBEN, M. ŠALITROŠ, I.
Original Title
Neutral cobalt(II)-bis(benzimidazole)pyridine field-induced single-ion magnets for surface deposition
Type
journal article in Web of Science
Language
English
Original Abstract
Two novel hexacoordinated Co(II)-based single-ion magnets were prepared and characterised. Both neutral complexes feature metal-centred coordination with one terminal and one bidentate nitrate anions along with tridentate derivatives of a 2,6-bis(1H-benzimidazole-2-yl)pyridine ligand containing either n-octyl (complex 1) or n-dodecyl (complex 2) chains. The presence of long aliphatic chains ensures their solubility in low polarity and volatile solvents frequently used for lithography patterning. This enabled the preparation of microstructural layers and patterns on technologically relevant substrates by easy-to-handle and low-cost wet lithographic techniques. On the other hand, attempts at surface deposition via sublimation were not successful due to thermal instability. The electronic structure of complexes typically features an orbitally non-degenerate ground state well-separated from the lowest excited state, which allows one to analyse magnetic anisotropy by the spin Hamiltonian approach. Zero-field splitting parameters obtained from CASSCF-NEVPT2 calculations and from the analysis of magnetic data suggest that both compounds display positive axial D parameters within a range of 17-25 cm(-1). Combined results from high-field electron paramagnetic resonance (X-band and HF-EPR) and Fourier-transform infrared magnetic spectroscopy (FIRMS) simulated with the spin Hamiltonian provided the axial and rhombic zerofield splitting terms D = +23.7 cm(-1) for complex 1 and D = +24.2 cm(-1) for complex 2, together with pronounced rhombicity in the range of E/D approximate to 0.15-0.19 for both compounds. Dynamic magnetic investigations have revealed the field-induced slow relaxation of magnetisation, with maximal relaxation times (tau) of 7.6 ms for 1 and 0.8 ms for 2. This relaxation is governed via a combination of several relaxation mechanisms, among which the quantum tunnelling was efficiently suppressed by the applied static magnetic field. The effective barriers of spin reversal U-eff = 77(4) K for 1 and U-eff = 70(2) K for 2 are consistent with the expected values calculated using the ZFS parameters.
Keywords
BASIS-SETS; RELAXATION; ATOMS
Authors
JURÁKOVÁ, J.; FELLNER, O.; SCHLITTENHARDT, S.; VAVREČKOVÁ, Š.; NEMEC, I.; HERCHEL, R.; ČIŽMÁR, E.; SANTANA, V.; ORLITA, M.; GENTILI, D.; RUANI, G.; CAVALLINI, M.; NEUGEBAUER, P.; RUBEN, M.; ŠALITROŠ, I.
Released
12. 9. 2023
Publisher
ROYAL SOC CHEMISTRY
Location
CAMBRIDGE
ISBN
2052-1553
Periodical
Inorganic Chemistry Frontiers
Year of study
10
Number
18
State
United Kingdom of Great Britain and Northern Ireland
Pages from
5406
Pages to
5419
Pages count
14
URL
https://pubs.rsc.org/en/content/articlelanding/2023/QI/D3QI00931A
BibTex
@article{BUT184658, author="Jana {Juráková} and Ondřej František {Fellner} and Soren {Schlittenhardt} and Šárka {Vavrečková} and Ivan {Nemec} and Radovan {Herchel} and Erik {Čižmár} and Vinicius Tadeu {Santana} and Milan {Orlita} and Denis {Gentili} and Giampiero {Ruani} and Massimiliano {Cavallini} and Petr {Neugebauer} and Mario {Ruben} and Ivan {Šalitroš}", title="Neutral cobalt(II)-bis(benzimidazole)pyridine field-induced single-ion magnets for surface deposition", journal="Inorganic Chemistry Frontiers", year="2023", volume="10", number="18", pages="5406--5419", doi="10.1039/d3qi00931a", issn="2052-1553", url="https://pubs.rsc.org/en/content/articlelanding/2023/QI/D3QI00931A" }