Publication detail
Parametric anisotropic singular equations with [p(z), q(z)]-growth conditions and indefinite perturbation
PAPAGEORGIOU, N. RADULESCU, V. ZHANG, J.
Original Title
Parametric anisotropic singular equations with [p(z), q(z)]-growth conditions and indefinite perturbation
Type
journal article in Web of Science
Language
English
Original Abstract
We study a parametric, anisotropic, singular equation with a reaction which has the combined effects of a singular term and of a superlinear perturbation which can be sign-changing. Using variational tools together with truncation and comparison techniques, we prove an existence and multiplicity result which is global with respect to the parameter (a “bifurcation-type" theorem).
Keywords
Comparison principle; Maximum principle; Multiple positive solutions; Sign-changing perturbation; Singular regularity; Variable exponent spaces
Authors
PAPAGEORGIOU, N.; RADULESCU, V.; ZHANG, J.
Released
14. 9. 2023
ISBN
1579-1505
Periodical
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
Year of study
117
Number
4
State
Republic of Italy
Pages from
1
Pages to
22
Pages count
22
URL
BibTex
@article{BUT184680,
author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and Jian {Zhang}",
title="Parametric anisotropic singular equations with [p(z), q(z)]-growth conditions and indefinite perturbation",
journal="Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas",
year="2023",
volume="117",
number="4",
pages="22",
doi="10.1007/s13398-023-01491-x",
issn="1579-1505",
url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001054389200001"
}