Publication detail

Parametric anisotropic singular equations with [p(z), q(z)]-growth conditions and indefinite perturbation

PAPAGEORGIOU, N. RADULESCU, V. ZHANG, J.

Original Title

Parametric anisotropic singular equations with [p(z), q(z)]-growth conditions and indefinite perturbation

Type

journal article in Web of Science

Language

English

Original Abstract

We study a parametric, anisotropic, singular equation with a reaction which has the combined effects of a singular term and of a superlinear perturbation which can be sign-changing. Using variational tools together with truncation and comparison techniques, we prove an existence and multiplicity result which is global with respect to the parameter (a “bifurcation-type" theorem).

Keywords

Comparison principle; Maximum principle; Multiple positive solutions; Sign-changing perturbation; Singular regularity; Variable exponent spaces

Authors

PAPAGEORGIOU, N.; RADULESCU, V.; ZHANG, J.

Released

14. 9. 2023

ISBN

1579-1505

Periodical

Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas

Year of study

117

Number

4

State

Republic of Italy

Pages from

1

Pages to

22

Pages count

22

URL

BibTex

@article{BUT184680,
  author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and Jian {Zhang}",
  title="Parametric anisotropic singular equations with [p(z), q(z)]-growth conditions and indefinite perturbation",
  journal="Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas",
  year="2023",
  volume="117",
  number="4",
  pages="22",
  doi="10.1007/s13398-023-01491-x",
  issn="1579-1505",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001054389200001"
}