Přístupnostní navigace
E-application
Search Search Close
Publication detail
HROMÁDKA, T. SMOLEŇ, T. REMIŠ, T. PECHER, B. SRBA, I.
Original Title
KInITVeraAI at SemEval-2023 Task 3: Simple yet Powerful Multilingual Fine-Tuning for Persuasion Techniques Detection
Type
conference paper
Language
English
Original Abstract
This paper presents the best-performing solution to the SemEval 2023 Task 3 on the subtask 3 dedicated to persuasion techniques detection. Due to a high multilingual character of the input data and a large number of 23 predicted labels (causing a lack of labelled data for some language-label combinations), we opted for fine-tuning pre-trained transformer-based language models. Conducting multiple experiments, we find the best configuration, which consists of large multilingual model (XLM-RoBERTa large) trained jointly on all input data, with carefully calibrated confidence thresholds for seen and surprise languages separately. Our final system performed the best on 6 out of 9 languages (including two surprise languages) and achieved highly competitive results on the remaining three languages.
Keywords
multilingual persuasion technique detection, fine-tuning, SemEval
Authors
HROMÁDKA, T.; SMOLEŇ, T.; REMIŠ, T.; PECHER, B.; SRBA, I.
Released
9. 7. 2023
Publisher
Association for Computational Linguistics
Location
Toronto
ISBN
978-1-959429-99-9
Book
17th International Workshop on Semantic Evaluation, SemEval 2023 - Proceedings of the Workshop
Pages from
629
Pages to
637
Pages count
9
URL
https://aclanthology.org/2023.semeval-1.86/
BibTex
@inproceedings{BUT185334, author="HROMÁDKA, T. and SMOLEŇ, T. and REMIŠ, T. and PECHER, B. and SRBA, I.", title="KInITVeraAI at SemEval-2023 Task 3: Simple yet Powerful Multilingual Fine-Tuning for Persuasion Techniques Detection", booktitle="17th International Workshop on Semantic Evaluation, SemEval 2023 - Proceedings of the Workshop", year="2023", pages="629--637", publisher="Association for Computational Linguistics", address="Toronto", doi="10.18653/v1/2023.semeval-1.86", isbn="978-1-959429-99-9", url="https://aclanthology.org/2023.semeval-1.86/" }