Publication detail

Quantification of alloying elements in steel targets: The LIBS 2022 regression contest

KÉPEŠ, E. VRÁBEL, J. KAŇA, V. ZÁDĚRA, A. DE GIACOMO, A. POŘÍZKA, P. KAISER, J.

Original Title

Quantification of alloying elements in steel targets: The LIBS 2022 regression contest

Type

journal article in Web of Science

Language

English

Original Abstract

We present the results of the regression contest organized for the LIBS 2022 conference. While the motivation and design of the contest are briefly presented, the work focuses on the methodologies of the three bestperforming teams. The employed spectral preprocessing strategies, choice of regression models and its optimization are detailed for each team separately. The aim of the contest reflects the long-term challenges faced by quantitative laser-induced breakdown spectroscopy (LIBS) analysis. Thus, the contest was designed with the purpose of providing a transparent platform for comparing and evaluating the large range of data processing tools available in the LIBS literature. Namely, the contest consisted of the quantification of two major (Cr, Ni) and two minor (Mn, Mo) elements in 15 steel targets. For constructing an appropriate regression model, spectra of 42 targets were provided. The spectra were collected using a commercially available laboratory-based LIBS system and made publicly available. The contest lasted 53 days during which the teams did not receive feedback. In total, 21 teams participated out of which the three best-performing methodologies are presented here. A single linear partial least squares model and two artificial neural network regression models are presented. The corresponding feature selection strategies included emission line selection, spectral range selection, and automatized wavelength selection. Various spectral normalization strategies and data augmentation strategies are also presented.

Keywords

Laser-induced breakdown spectroscopy; Quantification of alloying elements; Regression analysis; Artificial neural networks; Partial least squares regression; Feature selection

Authors

KÉPEŠ, E.; VRÁBEL, J.; KAŇA, V.; ZÁDĚRA, A.; DE GIACOMO, A.; POŘÍZKA, P.; KAISER, J.

Released

30. 5. 2023

Publisher

PERGAMON-ELSEVIER SCIENCE LTD

Location

OXFORD

ISBN

0584-8547

Periodical

Spectrochimica Acta Part B

Year of study

206

Number

106710

State

United Kingdom of Great Britain and Northern Ireland

Pages count

20

URL

BibTex

@article{BUT185400,
  author="Erik {Képeš} and Jakub {Vrábel} and Václav {Kaňa} and Antonín {Záděra} and Alessandro {De Giacomo} and Pavel {Pořízka} and Jozef {Kaiser}",
  title="Quantification of alloying elements in steel targets: The LIBS 2022 regression contest",
  journal="Spectrochimica Acta Part B",
  year="2023",
  volume="206",
  number="106710",
  pages="20",
  doi="10.1016/j.sab.2023.106710",
  issn="0584-8547",
  url="https://www.sciencedirect.com/science/article/pii/S0584854723000976?via%3Dihub"
}