Publication detail

Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness

TIANXIANG, G. RADULESCU, V.

Original Title

Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness

Type

journal article in Web of Science

Language

English

Original Abstract

In this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight,-Delta pau-Delta qu=lambda m(x)|u|q-2uinRN,$$\begin{equation*} \hspace*{3pc}-\Delta _pa u-\Delta _q u =\lambda m(x)|u|{q-2}u \quad \mbox{in} \,\, \mathbb {R}<^>N, \end{equation*}$$where N > 2$N \geqslant 2$, 1{0, 1}(\mathbb {R}N, [0, +\infty))$, a not equivalent to 0$a \not\equiv 0$ and m:RN -> R$m: \mathbb {R}N \rightarrow \mathbb {R}$ is an indefinite sign weight which may admit non-trivial positive and negative parts. Here, Delta q$\Delta _q$ is the q$q$-Laplacian operator and Delta pa$\Delta _pa$ is the weighted p$p$-Laplace operator defined by Delta pau:=div(a(x)| backward difference u|p-2 backward difference u)$\Delta _pa u:=\textnormal {div}(a(x)|\nabla u|{p-2} \nabla u)$. The problem can be degenerate, in the sense that the infimum of a$a$ in RN$\mathbb {R}N$ may be zero. Our main results distinguish between the cases p

Keywords

regularity; equations

Authors

TIANXIANG, G.; RADULESCU, V.

Released

8. 2. 2024

Publisher

London Mathematical Society

ISBN

0024-6093

Periodical

BULLETIN OF THE LONDON MATHEMATICAL SOCIETY

Year of study

56

Number

2

State

United Kingdom of Great Britain and Northern Ireland

Pages from

734

Pages to

755

Pages count

22

URL

Full text in the Digital Library

BibTex

@article{BUT186775,
  author="Gou {Tianxiang} and Vicentiu {Radulescu}",
  title="Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness",
  journal="BULLETIN OF THE LONDON MATHEMATICAL SOCIETY",
  year="2024",
  volume="56",
  number="2",
  pages="734--755",
  doi="10.1112/blms.12961",
  issn="0024-6093",
  url="https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961"
}