Přístupnostní navigace
E-application
Search Search Close
Publication detail
TSAPETIS, D. SHIELDS, M. GIOVANIS, D. OLIVIER, A. NOVÁK, L. CHAKROBORTY, P. SHARMA, H. CHAUHAN, M. KONTOLATI, K. VANDANAPU, L. LOUKREZIS, D. GARDNER, M.
Original Title
UQpy v4.1: Uncertainty quantification with Python
Type
journal article in Web of Science
Language
English
Original Abstract
This paper presents the latest improvements introduced in Version 4 of the UQpy, Uncertainty Quantification with Python, library. In the latest version, the code was restructured to conform with the latest Python coding conventions, refactored to simplify previous tightly coupled features, and improve its extensibility and modularity. To improve the robustness of UQpy, software engineering best practices were adopted. A new software development workflow significantly improved collaboration between team members, and continuous integration and automated testing ensured the robustness and reliability of software performance. Continuous deployment of UQpy allowed its automated packaging and distribution in system agnostic format via multiple channels, while a Docker image enables the use of the toolbox regardless of operating system limitations.
Keywords
Uncertainty quantification
Authors
TSAPETIS, D.; SHIELDS, M.; GIOVANIS, D.; OLIVIER, A.; NOVÁK, L.; CHAKROBORTY, P.; SHARMA, H.; CHAUHAN, M.; KONTOLATI, K.; VANDANAPU, L.; LOUKREZIS, D.; GARDNER, M.
Released
12. 12. 2023
Publisher
Elsevier
ISBN
2352-7110
Periodical
SoftwareX
Year of study
24
Number
1
State
Kingdom of the Netherlands
Pages from
Pages to
7
Pages count
URL
https://www.sciencedirect.com/science/article/pii/S2352711023002571?ref=cra_js_challenge&fr=RR-1
BibTex
@article{BUT187079, author="TSAPETIS, D. and SHIELDS, M. and GIOVANIS, D. and OLIVIER, A. and NOVÁK, L. and CHAKROBORTY, P. and SHARMA, H. and CHAUHAN, M. and KONTOLATI, K. and VANDANAPU, L. and LOUKREZIS, D. and GARDNER, M.", title="UQpy v4.1: Uncertainty quantification with Python", journal="SoftwareX", year="2023", volume="24", number="1", pages="1--7", doi="10.1016/j.softx.2023.101561", issn="2352-7110", url="https://www.sciencedirect.com/science/article/pii/S2352711023002571?ref=cra_js_challenge&fr=RR-1" }