Přístupnostní navigace
E-application
Search Search Close
Publication detail
BAISHYA, K. VRCHOVECKÁ, K. ALIJANI, M. RODRIGUEZ PEREIRA, J. THALLURI, S. PÁVKOVÁ GOLDBERGOVÁ, M. PŘIBYL, J. MACÁK, J.
Original Title
Bio-AFM exploits enhanced response of human gingival fibroblasts on TiO2 nanotubular substrates with thin TiO2 coatings
Type
journal article in Web of Science
Language
English
Original Abstract
The present work studies anodic TiO2 nanotube (TNT) layers and their surface modifications for enhancing the cell behavior of human gingival fibroblast cells (hGFs) with the contribution of bio-AFM (Atomic Force Micro-scopy) method. TNT layers, prepared via electrochemical anodization of Ti, with an average tube diameter of 15, 30, and 100 nm, were used as primary substrates for the study. Flat Ti foils were used as reference substrates. Part of the substrates was coated by ultrathin TiO2 coatings (approximate to 0.3 nm thin) using Atomic Layer Deposition (ALD). The cell growth and adhesion of hGFs on the TNT layers and Ti foils were compared between ALD coated and uncoated ones. The supplemental coatings altered the surface chemistry of the TNT layers, particularly shading the fluorine and carbon impurities within anodic TiO2, while preserving the original structure and morphology. The presented approach of very mild surface modification remarkably effects the material's biocompatibility and possess great prospect as implant materials. For the first time, the TNT/cell interface was investigated using bio-AFM in terms of Young's modulus, stiffness, cell adhesive force and roughness. Improved biocompatibility was studied in terms of increased cell viability, density, cell cytoskeleton orientation and overall stiffness of the hGFs.
Keywords
Nanotube; hGFs; Ti foils; Atomic layer deposition; Bio-AFM
Authors
BAISHYA, K.; VRCHOVECKÁ, K.; ALIJANI, M.; RODRIGUEZ PEREIRA, J.; THALLURI, S.; PÁVKOVÁ GOLDBERGOVÁ, M.; PŘIBYL, J.; MACÁK, J.
Released
1. 12. 2023
Publisher
ELSEVIER
Location
AMSTERDAM
ISBN
2666-5239
Periodical
Applied Surface Science Advances
Year of study
18
Number
1
State
Kingdom of the Netherlands
Pages count
12
URL
https://www.sciencedirect.com/science/article/pii/S2666523923000934?via%3Dihub
Full text in the Digital Library
http://hdl.handle.net/11012/245177
BibTex
@article{BUT187353, author="Kaushik {Baishya} and Katarina {Vrchovecká} and Mahnaz {Alijani} and Jhonatan {Rodriguez Pereira} and Sitaramanjaneya Mouli {Thalluri} and Monika {Pávková Goldbergová} and Jan {Přibyl} and Jan {Macák}", title="Bio-AFM exploits enhanced response of human gingival fibroblasts on TiO2 nanotubular substrates with thin TiO2 coatings", journal="Applied Surface Science Advances", year="2023", volume="18", number="1", pages="12", doi="10.1016/j.apsadv.2023.100459", issn="2666-5239", url="https://www.sciencedirect.com/science/article/pii/S2666523923000934?via%3Dihub" }