Přístupnostní navigace
E-application
Search Search Close
Publication detail
ZHUO, J. LOPES, J. RADULESCU, V.
Original Title
Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator
Type
journal article in Web of Science
Language
English
Original Abstract
We consider a Kirchhoff-type diffusion problem driven by the magnetic fractional Laplace operator. The main result in this paper establishes that infinite time blow-up cannot occur for the problem. The proof is based on the potential well method, in relationship with energy and Nehari functionals.
Keywords
Diffusion problem; Kirchhoff function; Magnetic fractional Laplacian; Nehari functional; Potential function
Authors
ZHUO, J.; LOPES, J.; RADULESCU, V.
Released
2. 4. 2024
ISBN
0893-9659
Periodical
APPLIED MATHEMATICS LETTERS
Year of study
150
Number
108977
State
United States of America
Pages from
1
Pages to
6
Pages count
URL
https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001150024200001
BibTex
@article{BUT187392, author="Jiabin {Zhuo} and Juliana Honda {Lopes} and Vicentiu {Radulescu}", title="Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator", journal="APPLIED MATHEMATICS LETTERS", year="2024", volume="150", number="108977", pages="6", doi="10.1016/j.aml.2023.108977", issn="0893-9659", url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001150024200001" }