Publication detail

Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator

ZHUO, J. LOPES, J. RADULESCU, V.

Original Title

Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator

Type

journal article in Web of Science

Language

English

Original Abstract

We consider a Kirchhoff-type diffusion problem driven by the magnetic fractional Laplace operator. The main result in this paper establishes that infinite time blow-up cannot occur for the problem. The proof is based on the potential well method, in relationship with energy and Nehari functionals.

Keywords

Diffusion problem; Kirchhoff function; Magnetic fractional Laplacian; Nehari functional; Potential function

Authors

ZHUO, J.; LOPES, J.; RADULESCU, V.

Released

2. 4. 2024

ISBN

0893-9659

Periodical

APPLIED MATHEMATICS LETTERS

Year of study

150

Number

108977

State

United States of America

Pages from

1

Pages to

6

Pages count

6

URL

BibTex

@article{BUT187392,
  author="Jiabin {Zhuo} and Juliana Honda {Lopes} and Vicentiu {Radulescu}",
  title="Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator",
  journal="APPLIED MATHEMATICS LETTERS",
  year="2024",
  volume="150",
  number="108977",
  pages="6",
  doi="10.1016/j.aml.2023.108977",
  issn="0893-9659",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001150024200001"
}