Publication detail
Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity
ZUO, J. ZHANG, W. RADULESCU, V.
Original Title
Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity
Type
journal article in Web of Science
Language
English
Original Abstract
n this paper, we study the following (p,q)-Kirchhoff problem with Choquard nonlinearity: −(1+a∫RN|∇u|pdx)Δpu−(1+b∫RN|∇u|qdx)Δqu+Vε(x)(|u|p−2u+|u|q−2u)=(|x|−μ⁎F(u))f(u)inRN, where ε is a small positive parameter, a,b are positive constants, 1
Keywords
(p,q)-Laplacian; Choquard nonlinearity; Ljusternik-Schnirelmann theory; Multiplicity; Penalization technique
Authors
ZUO, J.; ZHANG, W.; RADULESCU, V.
Released
20. 4. 2024
ISBN
0007-4497
Periodical
BULLETIN DES SCIENCES MATHEMATIQUES
Year of study
191
Number
103398
State
French Republic
Pages count
35
URL
BibTex
@article{BUT188259,
author="Jiabin {Zuo} and Weiqiang {zhang} and Vicentiu {Radulescu}",
title="Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity",
journal="BULLETIN DES SCIENCES MATHEMATIQUES",
year="2024",
volume="191",
number="103398",
pages="35",
doi="10.1016/j.bulsci.2024.103398",
issn="0007-4497",
url="https://www.webofscience.com/wos/woscc/full-record/WOS:001200435100001"
}